Proprietary Rights Notice

Information in this document is subject to change without notice. Companies, names and data used in examples are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical or otherwise, for any purpose, without the express written permission of IDEXX Laboratories. IDEXX Laboratories may have patents or pending patent applications, trademarks, copyrights or other intellectual or industrial property rights covering this document or subject matter in this document. The furnishing of this document does not give a license to these property rights except as expressly provided in any written license agreement from IDEXX Laboratories.

© 2015 IDEXX Laboratories, Inc. All rights reserved. • 06-0001252-01

*IDEXX VetLab, Catalyst, Catalyst One, IDEXX VetTrol, SmartLink, IDEXX InterLink, IDEXX SmartService, SNAP, and 4Dx are trademarks or registered trademarks of IDEXX Laboratories, Inc. in the United States and/or other countries. All other product and company names and logos are trademarks of their respective holders.
Preface

Safety Precautions

Note: If the equipment is used in a manner other than specified, the protection provided by the equipment may be impaired.

The analyzer does not contain any user-serviceable components. DO NOT disassemble.

Line voltage for the Catalyst One AC power adapter is 100–240 V AC, 50–60 Hz. Be sure to plug all equipment into properly grounded electrical outlets.

Use only the AC power adapter and AC power cable supplied.

Disconnect the AC power cable from the wall outlet if the:

• AC power cable or the DC power cord becomes frayed or otherwise damaged.
• AC power adapter is exposed to water or other liquids.

Performance Precaution

Do not use certain liquids, aerosols (such as canned air), solvents, ammonia, and other substances on or near the analyzer which could influence results.

Care of the Analyzer

It is recommended that you do not stack other equipment or containers on top of the analyzer.

Keep analyzer away from sources of heat or flames.

PROTECT your equipment from damp conditions, wet weather, or liquid spills.

Take care not to spill water or other liquids on the unit.

DO NOT use solvents, ink markers, sprays containing volatile liquids, or polish on the analyzer as it may damage the outer case. Clean only with a mild soap and slightly moist cloth and only when the analyzer is not in use.

Clean only with a mild soap and slightly moist cloth and only when the analyzer is not in use.
International Symbol Descriptions

International symbols are often used on packaging to provide a pictorial representation of particular information related to the product (such as expiration date, temperature limitations, batch code, etc.). IDEXX Laboratories has adopted the use of international symbols on our analyzers, product boxes, labels, inserts, and manuals in an effort to provide our users with easy-to-read information.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| Use by | A utiliser avant
Verwendbar bis
Usare entro
Usar antes de
使用期限 |
| Batch code (Lot) | Code de lot (Lot)
Chargenbezeichnung (Partie)
Codice del loto (partita)
Código de lote (Lote)
ロット番号 |
| Serial number | Numéro de série
Seriennummer
Numero di serie
Número de serie
シリアル番号 |
| Catalog number | Numéro catalogue
Bestellnummer
Numero di catalogo
Número de catálogo
製品番号 |
| Authorized Representative in the European Community | Représentant agréé pour la C.E.E.
Autorisierte EG-Vertretung
Rappresentante autorizzato nella Comunità Europea
Representante autorizado en la Comunidad Europea
EC内の正規販売代理店 |
| Manufacturer | Fabricant
Hersteller
Ditta produttrice
Fabricante
製造元 |
| Caution, consult accompanying documents | Attention, consulter les documents joints
Achtung, Begleitdokumente beachten
Attenzione, consultare la documentazione allegata
Precaución, consultar la documentación adjunta
注意、添付文書をご参照ください。 |
| Temperature limitation | Température limite
Zulässiger Temperaturbereich
Temperatura limite
Limitación de temperatura
保存温度（下限） |
| Upper limit of temperature | Limite supérieure de température
Temperaturobergrenze
Limite superiore di temperatura
Limite superior de temperatura
保存温度（上限） |
| Consult instructions for use | Consulter la notice d'utilisation
Gebrauchsanweisung beachten
Consultare le istruzioni per l'uso
Consultar las instrucciones de uso
取扱説明書をご参照ください。 |
| Keep away from sunlight | Conserver à l'abri de la lumière
Vor direkter Sonneneinstrahlung schützen
Mantener alejado de la luz solar
Tenere lontano dalla luce diretta del sole
遮光してください。 |
WEEE-Richtlinie 2002/96/EG
Directiva 2002/96/CE RAEE
Direttiva RAEE 2002/96/CE
廃電気電子機器指令 (WEEE Directive 2002/96/EC) |
| Biological risks | Risques biologiques
Biogefährlich
Rischi biologici
Riesgos biológicos
生物学的リスク |
| Do not reuse | Usage unique
Nicht wiederverwenden
No reutilizarw
Non riutilizzare
再利用しないでください。 |
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Caution, hot surface](Image) | Caution, hot surface
Attention, surface très chaude
Precaución, superficie caliente
Vorsicht, heiße Oberfläche
Attenzione, superficie rovente
高温注意 |
| ![Keep dry](Image) | Keep dry
Conserver dans un endroit sec
Mantener seco
Vor Nässe schützen
Tenere al riparo dall’umidità
濡らさないこと。 |
| ![This side up](Image) | This side up
Haut
Este lado hacia arriba
Diese Seite nach oben
Alto
この面を上にする。 |
| ![Electrostatic-sensitive device](Image) | Electrostatic-sensitive device
Appareil sensible aux charges électrostatiques
Dispositivo sensible a descargas electrostáticas
Gerät ist sensibel auf elektrostatische Ladungen
Dispositivo sensibile alle scariche elettrostatiche
静電気の影響を受ける装置 |
| ![Fragile](Image) | Fragile
Frágil
Zerbrechlich
Fragile
取扱注意 |
| ![Date of manufacture](Image) | Date of manufacture
Date de production
Fecha de producción
Herstelldatum
Data di produzione
製造年月日: |

Other Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USB symbol</td>
</tr>
<tr>
<td></td>
<td>Wireless symbol‡</td>
</tr>
<tr>
<td></td>
<td>Ethernet/network symbol</td>
</tr>
</tbody>
</table>

‡Feature coming soon
Introduction
Welcome to IDEXX’s next-generation chemistry analyzer—the Catalyst One* Chemistry Analyzer. The Catalyst One analyzer’s flexible test menu allows you to monitor the health status of specific organs, recheck values over time, customize profiles by adding single tests to CLIPs. You can even run up to 25 tests on a single sample (for a complete list of the individual slides and CLIPs available, see page 12).

The Catalyst One analyzer is for veterinary use only.

IDEXX VetLab* Station Connectivity
The Catalyst One analyzer is part of the IDEXX VetLab* suite of analyzers, all of which connect to the IDEXX VetLab Station (IDEXX’s laboratory information management system). Connecting multiple analyzers to the IDEXX VetLab Station helps you attain a comprehensive picture of your patient’s health, with the ability to view test results from multiple analyzers on a single report, determine disease progression with parameter-trending capabilities, and more.

By connecting the Catalyst One analyzer to the IDEXX VetLab Station, you can:
• Automatically review patients’ prior results on every printout for easy comparison.
• Improve client communications with illustrated diagnostic or treatment progress printouts.
• Link to expert descriptions and common causes of abnormal values.
• Print information to help explain the significance of results to your clients.
• Allow new staff to train independently.
• Learn proper protocols and tips for best techniques.

IDEXX Dry-Slide Technology
The Catalyst One analyzer uses dry-slide technology—the most accurate technology available for in-house testing. Dry-slide technology uses layers to remove impurities for the most accurate results from even compromised samples.
How it Works
There are several important steps that the analyzer performs in order to present the results of a sample. Once the slides and sample have been inserted into the analyzer, the Catalyst One analyzer incubates the slides. Then, if using a Catalyst* whole blood separator, the plasma is separated from a whole blood sample. The sample is then accurately dispensed onto the slides, the analyzer measures the color development of the slide, and then all used materials are removed from the analyzer.

Catalyst One Components

Front of the Analyzer

Side door
Status LED
Start button
Lock light
Sample drawer
Waste drawer

Inside of the Sample Drawer
Note: This picture depicts where the sample cup and whole blood separator should be placed in the sample drawer. Do not load a whole blood separator AND a sample cup for a single run.
Analyzer Status

The light-emitting diode (LED) indicator on the front panel of the Catalyst One analyzer indicates the analyzer’s status.

Note: You can also view the analyzer status by viewing its icon on the IDEXX VetLab Station Home screen.

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green (steady)</td>
<td>READY; analyzer is ready to process samples or perform maintenance tasks</td>
</tr>
<tr>
<td>Green (pulse)</td>
<td>STANDBY MODE</td>
</tr>
<tr>
<td>Yellow (steady)</td>
<td>IN PROCESS; analyzer is processing a sample or performing another activity</td>
</tr>
<tr>
<td>Yellow (pulse)</td>
<td>Analyzer is waiting for the user to begin processing a sample after receiving the patient information from the IDEXX VetLab Station</td>
</tr>
<tr>
<td>Red (flashing)</td>
<td>ERROR; an error has occurred; review error or alert messages on the IDEXX VetLab Station</td>
</tr>
</tbody>
</table>
Responding to an Alert

When the analyzer experiences a problem, an alert message appears on the upper right side of the IDEXX VetLab Station title bar, the LED on the front panel of the Catalyst One analyzer flashes red, and the Catalyst One icon on the IDEXX VetLab Station Home screen appears with an Alert status.

To View an Alert

Do one of the following:

- Tap the Catalyst One icon on the IDEXX VetLab Station Home screen.
- Tap the alert message in the title bar to display the alert message. Follow the instructions displayed in the alert message.

Installing the Catalyst One Analyzer

The Catalyst One analyzer works in conjunction with the IDEXX VetLab Station.

To Install the Catalyst One Analyzer

1. Before you unpack the analyzer, choose an optimum location for the instrument. The analyzer should be placed on a level surface in a well-ventilated area away from obvious sources of heat, direct sunlight, cold, humidity, or vibrations. For optimum results, room temperature should be at 15°C–30°C (59°F–86°F) and relative humidity at 15%–75%.

 IMPORTANT: Ensure proper ventilation. The analyzer’s cooling vents are in the base and the back.

2. Connect the analyzer to the router:
 - If you are planning to connect the device wirelessly to an IDEXX VetLab* Station, proceed to step 3 (wireless-capable router required).\(^1\)
 OR
 - If you are connecting the device to an IDEXX VetLab Station using a wired router, connect the device to a numbered port on the router using an Ethernet cable (provided).

 Note: For more information about connecting your analyzer to the router, see the installation instructions that accompanied your router.

3. Power on the Catalyst One analyzer. Once the Catalyst One icon displays on the IDEXX VetLab Station Home screen, your connections are complete.

 Note: If the Catalyst One icon does not appear on the IDEXX VetLab Station Home screen within 3 minutes, contact IDEXX Technical Support for assistance.

\(^1\)Feature coming soon
Catalyst One Analyzer Consumables
The following consumables are available for use with the Catalyst One analyzer:

CLIPs, Panels, and Slides

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Abbreviation</th>
<th>Chem 17 CLIP</th>
<th>Chem 15 CLIP</th>
<th>Chem 10 CLIP</th>
<th>Equine 15 CLIP</th>
<th>NSAID 6 CLIP</th>
<th>UPC Panel</th>
<th>Lyte 4 CLIP</th>
<th>QC CLIP</th>
<th>Individual Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>ALB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>ALKP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alanine Aminotransferase</td>
<td>ALT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amylase</td>
<td>AMYL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aspartate Aminotransferase</td>
<td>AST</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Blood Urea Nitrogen</td>
<td>BUN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>CHOL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Creatine Kinase</td>
<td>CK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Creatinine</td>
<td>CREA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chloride</td>
<td>Cl</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fructosamine</td>
<td>FRU</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gamma-glutamyltransferase</td>
<td>GGT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glucose</td>
<td>GLU</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potassium</td>
<td>K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lactate</td>
<td>LAC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lactate Dehydrogenase</td>
<td>LDH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lipase</td>
<td>LIPA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>PHBR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inorganic Phosphate</td>
<td>PHOS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>TBIL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Total Protein</td>
<td>TP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Total T₄</td>
<td>TT₄</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>TRIG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Urine Creatinine</td>
<td>UCRE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Urine Protein</td>
<td>UPRO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Uric Acid</td>
<td>URIC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Compatible Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Species</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine†</td>
<td>Ferret</td>
<td>Rabbit</td>
</tr>
<tr>
<td>Feline†</td>
<td>Goat</td>
<td>Rat</td>
</tr>
<tr>
<td>Equine†</td>
<td>Lizard</td>
<td>Sea Turtles</td>
</tr>
<tr>
<td>Bovine (beef cattle, dairy cow)</td>
<td>Llama</td>
<td>Sheep</td>
</tr>
<tr>
<td>Avian (budgerigar, cockatoos [grey cheek, Moluccan, umbrella], cockatiel, canary, conure, macaw [blue and gold, hyacinth, scarlet], parrots [Amazon blue, Amazon yellow, eclectus, African grey])</td>
<td>Monkey</td>
<td>Snake</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>Tortoise</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td></td>
</tr>
</tbody>
</table>

†Species-specific intervals are available for these species. All other species are qualified as “other.”
Using the Catalyst One* Analyzer

Analyzing Samples
There are four different work flows that can be used to analyze a sample on the Catalyst One* analyzer:

• **Analyze Sample Button**—Use this work flow if you **do not have** a practice management system connected to your IDEXX VetLab* Station via IDEXX SmartLink* or IDEXX InterLink* technology.

• **Pending List or Census List**—Use one of these work flows if you **have** a practice management system connected to your IDEXX VetLab Station via IDEXX SmartLink or IDEXX InterLink technology. Using this work flow will save you time because you do not need to enter the client and patient information into the IDEXX VetLab Station (since it has already been entered into your practice management system).

• **Ready to Run Icon**—Use this work flow if you initiated the sample run using one of the other work flows, but the analyzer was busy at the time and the sample could not be run immediately.

For more information on these work flows, see the *IDEXX VetLab Station Operator's Guide*.

Slide Handling
The Catalyst One analyzer allows you to run up to 25 tests on a single sample. Before you begin, please take note of the following:

• Frozen CLIPs/panels/slides can be run on the Catalyst One analyzer (no thawing required).

• Most CLIPs/slides should be loaded within 5 minutes of opening their foil packaging. The Lyte 4 CLIP should be loaded within 2 minutes of opening its foil packaging.

• If you are running a Lyte 4 CLIP, be sure to load it in the sample drawer before any other CLIPs or slides.

Diluting Samples
Dilutions should only be performed when a test value is outside the reportable range or when the sample contains interfering substances (e.g., medications) that cause a nonlinear or invalid result. The Catalyst One analyzer supports automated dilutions (the analyzer mixes the sample and diluent for you) and manual dilutions (you prepare the dilution outside of the analyzer). Select the appropriate option on the Identify Sample screen.

Remember the following important notes when diluting samples for analysis on the Catalyst One analyzer:

• Only dilute tests with results outside of the reportable range. Diluting tests with results in the normal range may produce invalid results.

• All chemistries should be analyzed first on the undiluted sample. Some analytes, such as GGT and total bilirubin, have low serum/plasma concentrations. These analytes may be diluted out even with the lowest dilution. Dilute the remaining sample and analyze any chemistries that were outside of the reportable range on the first analysis.

• Perform a dilution only when a test value is accompanied by a greater than symbol (>-) or dashes (---) on the patient report or when the analyzer informs you a dilution is necessary to receive accurate results.
• Use the proper diluent material for your sample type.
 – For plasma and serum samples, use normal saline.
 – IDEXX does not recommend manually diluting whole blood in a Catalyst* whole blood separator—only dilute the separated plasma.
 – For urine, use Catalyst* Urine P:C Diluent.
• Use an accurate measuring device, such as a calibrated pipette or syringe.
• For best results, start with a 1:2 dilution (1 part sample to 1 part diluent)—do not exceed 10 parts diluent.
• Do not dilute samples that are undergoing ammonia, phenobarbital, fructosamine, total T4, or electrolyte testing.
• Do not dilute small samples to achieve a minimum sample volume. Such dilutions on normal analyte concentration cannot be read accurately. When dilution is needed to determine some analytes at very high concentration, the sample should be diluted manually.
• An automated dilution run will be canceled if:
 – There is insufficient diluent/sample volume.
 – There are too many slides in the run.

Minimum Sample Volume for Dilutions
The minimum sample volume varies based on the dilution factor and the number of slides that are being diluted (see table below).

<table>
<thead>
<tr>
<th>Parts Sample + Parts Diluent = Diluent Ratio</th>
<th>Maximum Number of Slides per Dilution</th>
<th>Minimum Sample Volume Serum, Plasma, or Urine</th>
<th>Diluent Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1 = 1:2</td>
<td>5</td>
<td>155 µL</td>
<td>700 µL</td>
</tr>
<tr>
<td>1 + 3 = 1:4</td>
<td>10</td>
<td>130 µL</td>
<td>700 µL</td>
</tr>
<tr>
<td>1 + 5 = 1:6</td>
<td>10</td>
<td>130 µL</td>
<td>700 µL</td>
</tr>
<tr>
<td>1 + 9 = 1:10</td>
<td>10</td>
<td>100 µL</td>
<td>700 µL</td>
</tr>
</tbody>
</table>

Preparing Manual Dilutions

To Prepare a 1:2 Dilution
1. Accurately measure the desired amount of sample to be diluted and gently transfer it to a sample cup.
2. Accurately measure an equal amount of diluent and transfer it to the sample collected in step 1.
3. Thoroughly mix the sample and diluent.
4. Analyze the sample.
To Prepare Dilutions Greater Than 1:2
If additional dilutions beyond 1:2 are necessary, always begin with the original, undiluted sample. Then, incrementally increase the parts diluent as indicated in the dilution chart (below).

Volumes are for example only. Parts Sample + Parts Diluent = Total Parts (Dilution Factor)

<table>
<thead>
<tr>
<th>Parts Sample</th>
<th>Parts Diluent</th>
<th>Total Parts (Dilution Factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (100 µL)</td>
<td>0</td>
<td>1 (undiluted sample)</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>1 (100 µL)</td>
<td>2</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>2 (200 µL)</td>
<td>3</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>3 (300 µL)</td>
<td>4</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>4 (400 µL)</td>
<td>5</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>5 (500 µL)</td>
<td>6</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>6 (600 µL)</td>
<td>7</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>7 (700 µL)</td>
<td>8</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>8 (800 µL)</td>
<td>9</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>9 (900 µL)</td>
<td>10</td>
</tr>
<tr>
<td>1 (100 µL)</td>
<td>10 (1,000 µL)</td>
<td>11</td>
</tr>
</tbody>
</table>

Viewing and Printing Test Results
Analyzer results are automatically returned to the IDEXX VetLab Station and recorded in the appropriate patient’s record. The diagnostic results report is a comprehensive report of all the test results specified in a laboratory request for that patient on a specific day.

Patient test results can be printed automatically each time a set of results are returned or you can manually print the results when needed.

For more information about how to view and print test results, see the IDEXX VetLab Station Operator’s Guide.
Outside of Reportable Range Samples

Occasionally a test value may be outside the analyzer’s reportable range capability. The test value may be greater than (">") the reportable range, or interfering substances in the sample may be causing a nonlinear or invalid result. See the following chart for reportable ranges on individual chemistries. If a value is required, it will be necessary to dilute the sample and repeat the test.

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>U.S. Units</th>
<th>S.I. Units</th>
<th>French Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALB</td>
<td>0.1–6.0 g/dL</td>
<td>1–60 g/L</td>
<td>1–60 g/L</td>
</tr>
<tr>
<td>ALKP</td>
<td>10–2,000 U/L</td>
<td>10–2,000 U/L</td>
<td>10–2,000 U/L</td>
</tr>
<tr>
<td>ALT</td>
<td>10–1,000 U/L</td>
<td>10–1,000 U/L</td>
<td>10–1,000 U/L</td>
</tr>
<tr>
<td>AMYL</td>
<td>5–2,500 U/L</td>
<td>5–2,500 U/L</td>
<td>5–2,500 U/L</td>
</tr>
<tr>
<td>AST</td>
<td>0–1,083 U/L</td>
<td>0–1,083 U/L</td>
<td>0–1,083 U/L</td>
</tr>
<tr>
<td>BUN/UREA</td>
<td>2–130 mg/dL</td>
<td>0.6–46.4 mmol/L</td>
<td>0.034–2.730 g/L</td>
</tr>
<tr>
<td>Ca</td>
<td>1.0–16.0 mg/dL</td>
<td>0.25–4.00 mmol/L</td>
<td>10–160 mg/L</td>
</tr>
<tr>
<td>CHOL</td>
<td>6–520 mg/dL</td>
<td>0.16–13.44 mmol/L</td>
<td>0.06–5.20 g/L</td>
</tr>
<tr>
<td>CK</td>
<td>10–2,036 U/L</td>
<td>10–2,036 U/L</td>
<td>10–2,036 U/L</td>
</tr>
<tr>
<td>Cl</td>
<td>50–160 mmol/L</td>
<td>50–160 mmol/L</td>
<td>50–160 mmol/L</td>
</tr>
<tr>
<td>CREA</td>
<td>0.1–13.6 mg/dL</td>
<td>9–1202 µmol/L</td>
<td>1.0–136.0 mg/L</td>
</tr>
<tr>
<td>FRU</td>
<td>100–1,000 µmol/L</td>
<td>100–1,000 µmol/L</td>
<td>100–1,000 µmol/L</td>
</tr>
<tr>
<td>GGT</td>
<td>0–952 U/L</td>
<td>0–952 U/L</td>
<td>0–952 U/L</td>
</tr>
<tr>
<td>GLU</td>
<td>10–686 mg/dL</td>
<td>0.56–38.11 mmol/L</td>
<td>0.10–6.86 g/L</td>
</tr>
<tr>
<td>K</td>
<td>0.8–10 mmol/L</td>
<td>0.8–10 mmol/L</td>
<td>0.8–10.0 mmol/L</td>
</tr>
<tr>
<td>LAC</td>
<td>0.50–12.00 mmol/L</td>
<td>0.50–12.00 mmol/L</td>
<td>0.50–12.00 mmol/L</td>
</tr>
<tr>
<td>LDH</td>
<td>50–2,800 U/L</td>
<td>50–2,800 U/L</td>
<td>50–2,800 U/L</td>
</tr>
<tr>
<td>LIPA</td>
<td>10–6,000 U/L</td>
<td>10–6,000 U/L</td>
<td>10–6,000 U/L</td>
</tr>
<tr>
<td>Mg</td>
<td>0.5–5.2 mg/dL</td>
<td>0.21–2.17 mmol/L</td>
<td>5.0–52.0 mg/L</td>
</tr>
<tr>
<td>Na</td>
<td>85–180 mmol/L</td>
<td>85–180 mmol/L</td>
<td>85–180 mmol/L</td>
</tr>
<tr>
<td>NH₃</td>
<td>0–950 µmol/L</td>
<td>0–950 µmol/L</td>
<td>0–950 µmol/L</td>
</tr>
<tr>
<td>PHBR†</td>
<td>5–55 µg/mL</td>
<td>5–55 µg/mL</td>
<td>5–55 µg/mL</td>
</tr>
<tr>
<td>PHOS</td>
<td>0.2–16.1 mg/dL</td>
<td>0.06–5.19 mmol/L</td>
<td>2.00–161.00 mg/L</td>
</tr>
<tr>
<td>TBIL</td>
<td>0.1–27.9 mg/dL</td>
<td>2–477 µmol/L</td>
<td>1.0–279.0 mg/L</td>
</tr>
<tr>
<td>TP</td>
<td>0.5–12.0 g/dL</td>
<td>5–120 g/L</td>
<td>5–120 g/L</td>
</tr>
<tr>
<td>TRIG</td>
<td>10–375 mg/dL</td>
<td>0.11–4.23 mmol/L</td>
<td>0.10–3.75 g/L</td>
</tr>
<tr>
<td>TT₄ (canine)</td>
<td>0.5–10.0 µg/dL</td>
<td>6.43–128.70 nmol/L</td>
<td>6.43–128.70 nmol/L</td>
</tr>
<tr>
<td>TT₄ (feline)</td>
<td>0.5–20.0 µg/dL</td>
<td>6.4–257.4 nmol/L</td>
<td>6.4–257.4 nmol/L</td>
</tr>
<tr>
<td>UCRE</td>
<td>6–350 mg/dL</td>
<td>0.06–3.50 g/L</td>
<td>0.06–3.50 g/L</td>
</tr>
<tr>
<td>UPRO</td>
<td>5–400 mg/dL</td>
<td>0.05–4.00 g/L</td>
<td>0.05–4.00 g/L</td>
</tr>
<tr>
<td>URIC</td>
<td>0.1–20 mg/dL</td>
<td>6–1,190 µmol/L</td>
<td>1–200 mg/L</td>
</tr>
</tbody>
</table>

¹ 1 µg/mL = 4.31 µmol/L
Modifying the Settings on the Analyzer

Modifying the Sound Settings†
The analyzer will beep when it encounters an alert. You can modify the Sound settings to turn the sound off or adjust its volume.

1. Tap Instruments on the IDEXX VetLab Station Home screen.
2. Tap the Catalyst One side tab.
3. If you do not want the analyzer to make any sounds, tap Off in the Sound area.
 OR
4. If you want the volume of the sound to be quiet, tap Low in the Sound area.
 OR
5. If you want the volume of the sound to be loud, tap High in the Sound area.

Entering Standby Mode
You can modify the settings of the analyzer so that it enters Standby mode at a certain time each day or put it in Standby mode immediately.

1. Tap Instruments on the IDEXX VetLab Station Home screen.
2. Tap the Catalyst One side tab.
3. If you do not want the analyzer to ever enter Standby mode, tap Never in the Standby area.
 OR
4. If you want the analyzer to enter Standby mode at a certain time each day, tap Daily in the Standby area and then select the desired start time from the available drop-down list.
 OR
5. If you want the analyzer to enter Standby mode immediately, tap Now in the Standby area.

Exiting Standby Mode
You can set the analyzer to exit Standby mode at a certain time each day or immediately.

1. Tap Instruments on the IDEXX VetLab Station Home screen.
2. Tap the Catalyst One side tab.
3. If you want the analyzer to exit Standby mode at a certain time each day, tap Daily in the Exit Standby area and then select the desired start time from the available drop-down list.
 OR
4. If you want the analyzer to exit Standby mode immediately, tap Now in the Exit Standby area.

†Feature coming soon
Sample Preparation and Storage

Supported Sample Types for Catalyst* CLIPs and Slides

The following sample types can be used with Catalyst* CLIPs and slides:

<table>
<thead>
<tr>
<th>CLIPs/Slides</th>
<th>Abbreviation</th>
<th>Serum</th>
<th>Lithium-Heparin-Treated Plasma</th>
<th>Fluoride/Oxalate-Treated Plasma</th>
<th>Untreated Whole Blood (using the Catalyst* Lithium Whole Blood Separator)</th>
<th>Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 17 CLIP</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Chem 15 CLIP</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem 10 CLIP</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equine 15 CLIP</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSAID 6 CLIP</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC Panel</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lyte 4 CLIP</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>ALB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>ALKP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine Aminotransferase</td>
<td>ALT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>AMYL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate Aminotransferase</td>
<td>AST</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Urea Nitrogen</td>
<td>BUN/UREA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>CHOL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatine Kinase</td>
<td>CK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine</td>
<td>CREA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructosamine (part number 99-0000131)</td>
<td>FRU</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructosamine (part number 99-0003341)</td>
<td>FRU</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma-glutamyltransferase</td>
<td>GGT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>GLU</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate</td>
<td>LAC</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate Dehydrogenase</td>
<td>LDH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>LIPA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>PHBR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inorganic Phosphate</td>
<td>PHOS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>TBIL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Protein</td>
<td>TP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total T₄</td>
<td>TT₄</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>TRIG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uric Acid</td>
<td>URIC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preparing Samples for Use on the Catalyst One Analyzer

You can run untreated whole blood, lithium heparinized whole blood, plasma, serum, and urine samples on the Catalyst One analyzer.

IMPORTANT: Do not use EDTA or sodium heparin for chemistry analysis.

To Prepare an Untreated Whole Blood Sample
(Using a Lithium Heparin Whole Blood Separator)

1. Remove the green cap from the lithium heparin whole blood separator to prepare it for sample collection.

2. **Immediately** after sample collection (to avoid clotting), dispense 0.6–0.8 cc of untreated (no additive) whole blood into the lithium heparin whole blood separator using an untreated syringe with the needle removed.

 Tip: Use the fill line on the separator to ensure proper fill volume.

 Note: Heparinized samples can be used in the lithium heparin whole blood separator except when running feline AST, LDH, or CK. Double dosing may elevate the results for these assays in feline samples.

3. Gently swirl (do not invert or shake) the whole blood separator at least 5 times to mix the sample with the anticoagulant.

 Caution: Ensure that the cap is removed before loading the separator into the analyzer.

To Prepare a Plasma Sample

1. Use the appropriate tube and collection device.

2. Draw the sample gently and transfer if necessary.

 Note: Be sure to use the correct blood-to-lithium heparin ratio.

3. Gently invert (do not shake) the sample for 30 seconds to mix.

4. Centrifuge the sample.

5. Use a transfer pipette (or a 300 µL pipette) to transfer the appropriate volume of sample to a Catalyst sample cup (ensure there are no bubbles in the sample cup). The volume needed varies depending on the number of slides being used in the run—for more information, see “Proper Sample Cup Volume” on page 22.
To Prepare a Serum Sample
1. Use the appropriate tube and collection device.
2. Draw the sample gently and transfer if necessary.
3. Let the sample clot for a minimum of 20 minutes.
4. Centrifuge the sample.
5. Use a transfer pipette (or a 300 µL pipette) to transfer the appropriate volume of sample to a Catalyst sample cup (ensure there are no bubbles in the sample cup). The volume needed varies depending on the number of slides being used in the run—for more information, see “Proper Sample Cup Volume” on page 22.

To Prepare a Urine Sample
1. Obtain the sample through cystocentesis (recommended), catheter, or free-catch method.
2. Transfer the sample to a disposable sample tube.
3. Centrifuge the sample.
4. Use a transfer pipette (or a 300 µL pipette) to transfer the appropriate volume of supernatant urine to a Catalyst sample cup (ensure there are no bubbles in the sample cup). The volume needed varies depending on the number of slides being used in the run—for more information, see “Proper Sample Cup Volume” on page 22.
Proper Sample Cup Volume

The volume of plasma, serum, or urine sample required varies based on the number of slides being used in the run:

<table>
<thead>
<tr>
<th>Number of slides</th>
<th>Sample cup fill volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>130</td>
</tr>
<tr>
<td>9</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>160</td>
</tr>
<tr>
<td>12</td>
<td>170</td>
</tr>
<tr>
<td>13</td>
<td>180</td>
</tr>
<tr>
<td>14</td>
<td>190</td>
</tr>
<tr>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>16</td>
<td>210</td>
</tr>
<tr>
<td>17</td>
<td>220</td>
</tr>
<tr>
<td>18</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>280</td>
</tr>
</tbody>
</table>

Sample Inspection After Centrifugation

It is good practice to examine the sample carefully following centrifugation in a centrifuge and/or in the analyzer (by running a whole blood separator). If fibrin strands can be seen in the sample, they may interfere with sample pipetting. It may be necessary to rim the serum/plasma with a wooden stick, respin the sample, and proceed.

Various conditions, such as hemolysis, may affect results. You might also want to modify your test panel based on the following visual observations. Refer to the “Chemistry Descriptions” section on pages 30–51 for information about how each condition may affect specific chemistries.

Note: We recommend that after you have centrifuged a sample in a Catalyst whole blood separator that you inspect the sample for the conditions listed above.

Hemolysis

Visual: Sample has a transparent reddish hue ranging from pale pink to deep red.

Indications: Damage to red blood cells during sample preparation or intravascular hemolysis.

Icterus

Visual: Plasma has a transparent yellow to opaque brown color.

Indications: Obstructive or toxic liver disease, intravascular hemolysis.
Lipemia

Visual: Sample has a pale, milky appearance, possibly with floating fat globules.

Indications: Recent ingestion of a fatty meal or dysfunction in lipid metabolism.

Sample Storage

We recommend that you prepare and analyze samples immediately after collection for best results. However, if storage is necessary, follow these sample storage and testing guidelines.

Storing Serum/Plasma

For storage, the serum or plasma must be separated and removed immediately from the blood cells. Do not attempt to pour off the sample.

- Using a transfer pipette, carefully transfer the serum or plasma to an untreated collection tube, taking care not to draw up any white or red blood cells.
- Cap the tube tightly to avoid contamination and evaporation. Avoid frothing at any stage as this damages the serum proteins.

If you cannot perform analysis within 4 hours of drawing and processing the sample, refrigerate it at 2°C–8°C (36°F–46°F). If you cannot perform analysis for more than 48 hours, you should freeze the serum/plasma at -18°C (0°F).

Notes:

- For additional information on the effects of delays in removing serum or plasma from the cells, see the "Chemistry Descriptions" section on pages 30–51.
- See the calcium (Ca), total bilirubin (TBIL), lactate dehydrogenase (LDH), ammonia (NH₃), electrolytes (Na, K, Cl), and glucose (GLU) chemistry descriptions for additional special handling and storage requirements.
- IDEXX does not recommend freezing samples that will be used to run electrolytes.

Storing Whole Blood

Lithium heparinized whole blood samples should be analyzed immediately. Samples that are not analyzed within 30 minutes should be placed in a tube to be separated and stored.

Important: Do not store whole blood samples in whole blood separators.

Storing Urine

Urine should be tested within 2 hours. Do not store urine in the refrigerator for more than 24 hours.

Analysis of Stored Samples

For samples stored at 2°C–8°C (36°F–46°F) and at -18°C (0°F):

- Allow the samples to come to room temperature (19°C–27°C/66°F–81°F).
- Mix the samples gently, but thoroughly, by inversion. Do not shake.
- Centrifuge the samples to remove any fibrin particles (or urine sediment) that may have formed during storage.
- Analyze the samples immediately after centrifugation.
Quality Control

Overview
The purpose of quality control (QC) is to verify the integrity of your slides and also to verify that your Catalyst One* analyzer is functioning properly.

You should run a QC test:
• When the analyzer is first installed.
• After cleaning the internal components of the analyzer.
• If the analyzer has been moved.
• To verify system performance.

Quality Control Materials

IDEXX VetTrol* Control
In each box of IDEXX VetTrol* Control, there are four vials containing freeze-dried powder (dark brown bottle marked “VetTrol Control”) and four vials containing diluent (lighter bottles marked “Diluent for VetTrol”). The lot numbers for the diluent and the control are different and can be found on the product packaging.

For more information about IDEXX VetTrol Control, see its package insert.

Storage
Control and diluent vials should be stored frozen (-18°C/0°F). Discard opened control vials within 24 hours. Expired or unwanted material should be discarded with other clinical waste.

Note: Do not store in the freezer door; only in the main freezer compartment.

Stability and Handling
For most chemistries, IDEXX VetTrol Control can be used up to 24 hours after reconstitution when it is stored in the refrigerator and equilibrated to room temperature before running (do not leave at room temperature for more than 2 hours). For creatine kinase and ammonia values, IDEXX VetTrol Control fluid should be used within 2 hours following reconstitution. Exposure to light will affect total bilirubin and creatine kinase results. Ammonia concentration will increase with time.

UPRO Control
In each box of UPRO Control, there are six vials containing the control fluid. The lot number can be found on the product packaging.

Storage
Control fluid should be refrigerated (2°C–8°C/36°F–46°F). Discard at the expiration date. Expired or unwanted material should be discarded with other clinical waste.

Stability and Handling
Use within 24 hours after opening (refrigerate when not in use).
Advanced Control
In each box of Advanced Control, there is one vial containing the control fluid. The lot number can be found on the product packaging.

Note: Each vial contains enough fluid for 2 runs, in the event a secondary run is necessary.

Storage
Store frozen until the expiration date, or store in the refrigerator for up to 5 days.

Stability and Handling
Once opened, Advanced Control cannot be stored and reused—discard remaining fluid after use.

PHBR Control
In each box of PHBR Control, there are six vials containing the control fluid. The lot number can be found on the product packaging.

Storage
Store frozen until the expiration date, or store in the refrigerator for up to 7 days.

Stability and Handling
Once thawed, PHBR Control cannot be stored and reused—discard remaining fluid after use.

Quality Control CLIPs and Slides
IDEXX recommends that you perform monthly quality control testing after you have cleaned the internal components of your analyzer. The convenient Catalyst* QC CLIP contains all of the chemistry slides needed to perform this task. It is also recommended that you perform a quality control for electrolytes using the Catalyst* Lyte 4 CLIP.

Run the QC CLIP and the Lyte 4 CLIP
Use the convenient QC CLIP and the Lyte 4 CLIP in conjunction with the IDEXX VetTrol Control fluid to perform quality control on your Catalyst One analyzer. It is recommended that you wait at least 30 minutes after running any slides before running the QC CLIP.

OR

Run Individual Slides
You can use individual slides to create your own QC panel and perform a quality control test (one slide per group). If you want to use individual slides to run quality control, we recommend a minimum of one slide from each of the groups below.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>AMYL</td>
</tr>
<tr>
<td></td>
<td>CHOL</td>
</tr>
<tr>
<td></td>
<td>GLU</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
</tr>
<tr>
<td></td>
<td>LIPA</td>
</tr>
<tr>
<td></td>
<td>TBIL</td>
</tr>
<tr>
<td></td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>TRIG</td>
</tr>
<tr>
<td>Group 3</td>
<td>ALB</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>CREA</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
</tr>
<tr>
<td></td>
<td>PHOS</td>
</tr>
<tr>
<td></td>
<td>BUN/UREA</td>
</tr>
<tr>
<td></td>
<td>URIC</td>
</tr>
<tr>
<td></td>
<td>UCRE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 4</th>
<th>ALT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LDH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5</th>
<th>ALKP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GGT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 6</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
</tr>
<tr>
<td></td>
<td>CK</td>
</tr>
<tr>
<td></td>
<td>UPRO (to be used with UPRO Control fluid only)</td>
</tr>
</tbody>
</table>

Preparing Control Fluid

The instructions for preparing control fluid vary depending on the type of control you are preparing.

To Prepare IDEXX VetTrol Control Fluid

1. Remove one diluent and one control vial from freezer. Allow 60–90 minutes for vials to acclimate to room temperature.
2. Slowly invert the diluent vial several times to thoroughly mix the contents. Do not shake.
3. Gently tap the control vial on the counter several times to dislodge any material adhering to the stopper.
4. Remove the seal and stopper from each vial just before adding the diluent to control. Do not leave the vials open.
5. Transfer exactly 3.0 mL of diluent to the control vial, using a clean, dry, Class A volumetric pipette or an equivalent automatic pipette. Discard the remaining diluent. **IMPORTANT:** Measurement must be precise or results will be incorrect.
6. Replace the stopper on the control vial and hold it firmly in place. Gently invert the vial 6–10 times every 10 minutes for **one hour** (the use of a slow rocker is recommended). Do not shake. Reconstitution, with occasional inversion, will take **45–60 minutes**. Visually verify that all freeze-dried material is dissolved before using.
7. Run quality control on the Catalyst One analyzer (see instructions below).

To Prepare UPRO Control Fluid

1. Take one vial of UPRO Control out of the refrigerator and gently invert it 6–10 times to mix thoroughly.
2. Transfer 300 µL of UPRO Control into a Catalyst* sample cup (to be loaded in the sample drawer).
3. Let the contents in the sample cups reach room temperature (approximately 10 minutes).
4. Run quality control on the analyzer.
To Prepare Advanced Control Fluid
1. If the Advanced Control has been frozen, allow it to thaw for 30 minutes prior to use.
2. Invert the Advanced Control vial at least 5 times.
3. Transfer the contents of the Advanced Control vial to a Catalyst* sample cup.
4. Run quality control on the analyzer.

To Prepare PHBR Control Fluid
1. Take one vial of PHBR Control out of the freezer and allow it to reach room temperature (approximately 60 minutes).
2. Once you have confirmed that there is no visible frozen material in the vial, gently invert it 6–10 times to mix thoroughly.
3. Transfer 300 µL of PHBR Control into a Catalyst* sample cup.
 Note: You will need one PHBR slide wash and one PHBR slide for the quality control procedure.
4. Run quality control on the analyzer.

Running Quality Control

To Run General Quality Control on the Catalyst One analyzer
1. Tap the Catalyst One icon on the IDEXX VetLab Station Home screen.
2. Tap Maintenance and then tap Quality Control.
3. Tap the quality control lot number you are using and then tap Run QC.
4. Follow the on-screen instructions for preparing and running quality control.

Notes:
- To view QC results at any time, tap Maintenance, tap Quality Control, tap View QC Results, select the desired date that QC was run, and then tap View Results.
- To view the expected ranges for each chemistry in a QC lot, tap Maintenance, tap Quality Control, select the desired QC lot, and then tap View QC Lot Information.
Overview

In addition to performing monthly quality control checks on the Catalyst One* analyzer, it is recommended that you:

• Clean the outside of the analyzer with a damp (not wet) lint-free cloth. A mild liquid soap will remove grease.
• Clean the interior of the waste drawer with a lint-free cloth dampened with 70% isopropyl alcohol.
• Upgrade the software promptly.

Upgrading the Software

As new features and functionality are added to the Catalyst One analyzer, you will receive software upgrades from IDEXX. If you have IDEXX SmartService* Solutions, the upgrade will be sent via your IDEXX VetLab* Station automatically. If you do not have IDEXX SmartService Solutions, you will receive an upgrade disc in the mail. Be sure to read the software notes contained with each new release.

Cleaning the Internal Components of the Analyzer

To ensure optimal performance of your analyzer, it is important that you clean the internal components (incubator ring, optics window, and carousel) monthly and before performing quality control.

It is recommended that you wear clean powder-free latex or nitrile gloves when cleaning the internal components of the analyzer. Wearing these gloves helps to avoid smudges on the components and ensures an effective cleaning.

IMPORTANT: Never use cleaning materials (such as alcohol cleaning wipes containing sodium bicarbonate) that leave a residue once the alcohol/solvent evaporates.

To Clean the Internal Components

1. Tap the Catalyst One icon on the IDEXX VetLab Station Home screen.
2. Tap Maintenance, tap Clean, and follow these on-screen instructions.
 a. Open the side door on your analyzer.
 b. Raise the carousel cover until the green lever magnetizes itself to the inside of the analyzer.
 c. Lift up on the carousel and remove it from the analyzer.
d. Using an IDEXX-supported alcohol prep pad, wipe the incubator ring and optics window in a counterclockwise direction. Repeat this step at least three times using a new alcohol prep pad for each wipe.

e. Clean the white reference tile using a new alcohol prep pad.

f. Using a dry optical tissue, dry the optics window and reference tile, ensuring all signs of dampness have evaporated from the cleaned components. If streaks or smudges remain, repeat the cleaning process.

g. Replace the carousel inside of the analyzer, lower the carousel cover and close the side door.

h. Tap Done.

Cleaning the Outside of the Analyzer and the Sample Drawer

Clean the outside of the analyzer or sample drawer with a damp (not wet) lint-free cloth. A mild liquid soap will remove grease. Do not use any of the following near the analyzer: organic solvents, ammonia-based cleaning products, ink markers, sprays containing volatile liquids, insecticides, disinfectant, polish, or room freshener.

Care should be taken not to spill any samples, chemicals, cleaning agents, water, or other fluids on/in the analyzer.

Note: Dust and animal hair can lead to analyzer failures. Routinely dust off the analyzer with a damp cloth and dust around its location. Do not block the cooling vents under the analyzer by allowing paper, loose materials, or dust to accumulate.

WARNING: Never wipe the analyzer or its surroundings with ammonia-based cleaning products. Avoid urine odors around analyzer. Ammonia in the atmosphere will falsely increase ammonia (NH₃) quality control and patient test results.

Emptying the Waste Drawer

It is essential that you empty the waste drawer after every run or when prompted. The analyzer will not operate when the waste drawer is full. Pull the waste drawer to remove it from the analyzer.
Appendices

Chemistry Descriptions
Serving veterinarians throughout the world, IDEXX Laboratories understands that medical content, including interpretation of diagnostic results and medical protocols may vary from country to country. A medical review board has approved the content presented in this document.

IDEXX has more than 40 reference laboratories worldwide employing over 100 veterinarians. If you have any questions about the medical content or interpretation of results in this document, please contact IDEXX Laboratories.

Introduction to Biochemical Profiling
By performing appropriate biochemical tests on quality samples, you can obtain information that, when combined with patient history and clinical findings, should assist you in making an accurate diagnosis. Appropriate biochemical tests are also essential for monitoring and prognostication purposes once a diagnosis is achieved.

Single tests are helpful in particular circumstances, such as following the course of an identified disease or for monitoring the effect of therapy. However, many individual chemistry tests give information about different organ systems and should be used in combination with other tests (panels or profiles) to help characterize disease.

Alanine Aminotransferase (ALT)
For practical purposes, the enzyme alanine aminotransferase is specific to the liver in dogs and cats. It is found in the hepatocyte cytoplasm and may be released into the blood during both reversible and irreversible (cell necrosis) changes.

Principal Reason for Performing the Test
To investigate hepatocellular injury in dogs and cats.

Note: This test is not useful in the detection of liver disease in ruminants, horses, and pigs as the enzyme activity in the liver is very low. Even with severe liver disease in these species, the increase in activity is minimal.

Most Common Abnormality Indicated by the Test
Hepatocellular injury.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. Hemolyzed specimens should not be used because ALT contamination from red blood cells will occur. If plasma is being collected, use only lithium heparinized samples.

Complementary Tests
Alanine aminotransferase activity is usually determined in conjunction with other tests of hepatic function or damage.
Reaction Sequence

\[
\text{alanine} + \alpha\text{-ketoglutarate} \xrightarrow{\text{ALT}} \text{pyruvate} + \text{glutamate}
\]

\[
\text{pyruvate} + \text{NADH} + H^+ \xrightarrow{\text{LDH}} \text{lactate} + \text{NAD}^+
\]

Albumin (ALB)

Albumin forms the largest fraction of the total serum protein in the healthy animal. It is synthesized solely by the liver, has a relatively low molecular weight, and plays an important role in the transport of endogenous and exogenous compounds by binding with those compounds. Albumin also plays a major role related to osmoregulation.

Principal Reasons for Performing the Test

To investigate causes of hypoalbuminemia: protein-losing nephropathy, protein-losing enteropathy, as well as hepatic insufficiency (decreased production) and decreased absorption due to malabsorption (gastrointestinal disease) or malnutrition. In addition, it is helpful in characterizing the degree of dehydration with increases in serum albumin concentrations, and it is commonly decreased with active inflammatory disease (negative acute phase reactant).

The test should not be performed in isolation because of its lack of specificity.

Most Common Abnormalities Indicated by the Test

Decreased albumin—-inflammatory disease, protein-losing nephropathy and enteropathy, and decreased production (hepatic insufficiency).

Increased albumin—dehydration.

Sample Type and Precautions

Remove plasma or serum promptly from the cells or clot. Hemolysis may occur if the sample is not handled properly. Although dry-slide technology minimizes the interfering effect of mild-to-moderate hemolysis, marked hemolysis will cause an increased albumin value.

Complementary Tests

Albumin concentration is usually determined in conjunction with the measurement of total protein and other tests of renal and hepatic function. When albumin is measured with total protein, the total globulins will be calculated automatically and given with the results.

Reaction Sequence

\[
\text{albumin} + \text{bromocresol green (BCG)} \rightarrow \text{BCG-albumin complex}
\]

Alkaline Phosphatase (ALKP)

The enzyme alkaline phosphatase is found in many body tissues. Highest levels are found in the kidney cortex, small intestinal mucosa, and osteoblasts. The enzyme is also present in the liver primarily located on the bile canaliculus; thus an increase in ALKP may indicate cholestasis.

In cats and horses, the half-life of hepatic alkaline phosphatase is very short for ALKP and even shorter for other natural tissue sources of ALKP due to rapid renal excretion/metabolism. Sensitivity of the test in cats and horses is low. Since the nonhepatic sources of ALKP have relatively short half-lives compared to the hepatic source, a mild-to-modest increase in ALKP in these species can be a specific indicator of cholestasis.
Principal Reason for Performing the Test
As an indicator of hepatic and/or biliary disease.

Most Common Abnormality Indicated by the Test
Obstructive changes in the biliary system. A special consideration for interpreting ALKP changes in the dog is required because there are “induced” forms of ALKP due to glucocorticoids and other influences that are not associated with the natural tissue sources of ALKP. The nonhepatic sources of ALKP (bone, intestinal, placental) in the dog will only rarely be measured as high as threefold above the high end of the reference range because of their relative short half-lives compared to the induced and hepatic forms of ALKP. With both the induced and hepatic source (cholestasis) of ALKP, serum enzyme activities are commonly greater than the threefold increase; therefore, when a greater than threefold increase is noted in ALKP in the dog, either cholestasis or induced enzyme is suspected.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples. Hemolyzed specimens should not be used because ALKP contamination from red blood cells will increase results while hemoglobin decreases results. Above normal total bilirubin levels may reduce ALKP results.

Complementary Tests
Alkaline phosphatase activity is usually determined in conjunction with other tests of hepatic function and damage.

Reaction Sequence

\[p\text{-}nitrophenyl \text{ phosphate} \xrightarrow{\text{Mg}^{2+}, \text{AMP}, \text{ALKP}} \text{p\text{-}nitrophenol} + \text{H}_3\text{PO}_4 \]

Ammonia (NH}_3\)
Ammonia is the catabolic product of protein digestion and is extremely toxic. It is converted rapidly in the liver to urea, which is eliminated from the body by the kidneys.

Principal Reason for Performing the Test
To evaluate hepatic function.

Most Common Abnormality Indicated by the Test
Increased ammonia—decreased hepatic functional mass or hepatic vascular shunt.

Sample Type and Precautions
Use only lithium heparinized samples.

Blood should be processed and centrifuged immediately following collection; for this reason, plasma is recommended as the sample of choice.

Ammonia measurements in either plasma or serum are significantly affected by environmental factors and/or the passage of time. **Minimal exposure of the sample to the air is essential.** All sample containers should be capped unless sample is being introduced or withdrawn. Do not attempt to measure ammonia in hemolyzed samples. Contamination from the red blood cells will invalidate the test.
Complementary Tests
Ammonia may be determined in isolation but more often in conjunction with other tests of hepatic damage or dysfunction, such as pre- and postprandial bile acids.

Reaction Sequence

\[\text{NH}_3 + \text{bromophenol blue (ammonia indicator)} \rightarrow \text{blue dye} \]

Amylase (AMYL)
This section should be read in conjunction with the Lipase (LIPA) section.

The main source of serum amylase is the pancreas, although pathology of the liver and small intestine may result in significant elevations of this enzyme (above the reference range). Since amylase is cleared by the kidneys, renal pathology may also result in elevation of amylase independent of pancreatic disease.

Principal Reason for Performing the Test
As an indicator of pancreatic disease and potential acute pancreatitis.

Most Common Abnormality Indicated by the Test
Acute necrotizing pancreatitis.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. Hemolyzed specimens should not be used. Do not use oxalate, citrate, or EDTA anticoagulants. If plasma is being collected, use only lithium heparinized samples.

Blood samples should be taken within one day of the onset of symptoms that suggest acute pancreatitis.

Complementary Tests
Amylase and lipase are usually determined in conjunction with one another. Evaluation of a comprehensive chemistry profile that includes electrolytes is generally recommended because of secondary effects of acute pancreatitis. Specific pancreatic lipase should be considered in suspected cases of pancreatitis.

Reaction Sequence

\[\text{dyed amylopectin} \rightarrow \text{amylose} \rightarrow \text{dyed saccharides} \]

Aspartate Aminotransferase (AST)
The enzyme aspartate aminotransferase is present in large amounts in multiple tissues of dogs, cats, and many other animal species. Hepatocytes, cardiac muscle cells, and skeletal muscle cells have relatively high concentrations of AST. It is found in the cytoplasm and mitochondria of the cells and is released into the blood during cell injury. If no increase in ALT is seen in conjunction with an increased AST in the dog and cat, cardiac or skeletal muscle cell injury is most likely. For increased AST values with equine, bovine, and porcine samples, liver, cardiac, and skeletal muscle cell injury must be considered.

Principal Reason for Performing the Test
To investigate damage to liver, cardiac, or skeletal muscle.
Most Common Abnormalities Indicated by the Test
Dogs and cats—cardiac or skeletal muscle injury when ALT is not increased; liver, cardiac, or skeletal muscle injury if both ALT and AST are increased.

Horses, cows, and pigs—liver, cardiac, or skeletal muscle injury.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. Hemolyzed specimens should not be used because AST contamination from red blood cells will occur. EDTA and fluoride/oxalate should not be used as anticoagulants. If plasma is being collected, use only lithium heparinized samples.

Blood samples should be processed and centrifuged immediately after collection. Even slight hemolysis can cause marked increases in activity because of high intracellular concentrations of AST in red blood cells.

Complementary Tests
Aspartate aminotransferase activity is usually determined in conjunction with other tests of liver, cardiac, or skeletal muscle function or damage.

Reaction Sequence

\[
\text{aspartate} + \alpha\text{-ketoglutarate} \xrightarrow{\text{AST}} \text{oxaloacetate} + \text{glutamate}
\]

\[
\text{oxaloacetate} \xrightarrow{\text{oxaloacetate dehydrogenase}} \text{pyruvate} + \text{CO}_2
\]

\[
\text{pyruvate} + \text{phosphate} + \text{O}_2 \xrightarrow{\text{pyruvate oxidase}} \text{hydrogen peroxide} + \text{acetylphosphate}
\]

\[
\text{hydrogen peroxide} + \text{leuco dye} \xrightarrow{\text{peroxidase}} \text{dye}
\]

Blood Urea Nitrogen (BUN)
The catabolism of proteins results in the production of ammonia, which is extremely toxic. Ammonia is converted to urea in the liver and eliminated from the body by glomerular filtration in the kidneys.

Principal Reason for Performing the Test
As an indicator of renal disease or pathologic conditions that result in bleeding into the gastrointestinal tract.

Most Common Abnormalities Indicated by the Test
Increased urea—prerenal, postrenal and renal azotemia with decreased glomerular filtration rate; high-protein diet or bleeding into the gastrointestinal tract.

Decreased urea—decreased protein intake; hepatic insufficiency; diuresis.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples.

Blood should not be drawn for urea determination within 6 hours of a meal. Do not use sodium fluoride or EDTA as anticoagulant. Samples that contain hemoglobin increase urea nitrogen.
Complementary Tests
Urea concentration should usually be determined in conjunction with measurements of creatinine, inorganic phosphate, total protein, albumin, and a complete urinalysis. Urea concentration is influenced by high-protein diet rather than creatinine.

Reaction Sequence
\[\text{H}_2\text{NCONH}_2 + \text{H}_2\text{O} \xrightarrow{\text{urease}} 2\text{NH}_3 + \text{CO}_2 \]

Calcium (Ca)
Calcium is an essential element that is involved in many body systems. These include the skeleton, enzyme activation, muscle metabolism, blood coagulation, and osmoregulation. In the blood, calcium exists in ionized and protein bound forms. Factors governing the total plasma, whole blood, or serum concentration are complex and include interaction with other chemical moieties, proteins, and hormones.

Calcium, phosphorus, and albumin metabolism are interdependent.

Principal Reason for Performing the Test
As an indicator of certain neoplasias, bone disease, parathyroid disease, eclampsia, and renal disease.

Most Common Abnormalities Indicated by the Test
Increased calcium—hypercalcemia of malignancy (due to tumor release of PTH-like substances), spurious.
Decreased calcium—potential renal failure with resultant hyperphosphatemia, dietary, spurious.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples.
Centrifugation should take place quickly after the sample has been drawn. The sample should not be exposed to the air for long periods. Glassware must be scrupulously cleaned to avoid contamination by sources of calcium (e.g., detergents). Prolonged contact with the clot may lead to lowered calcium values due to dilution by red blood cell water.
Do not use tubes containing fluoride, oxalate, citrate, or EDTA as these agents will cause significant negative interference due to calcium chelation.
If analysis cannot be performed within 4 hours, the sample should be removed from the red blood cells and refrigerated in a tightly stoppered container at 2°C–8°C (36°F–46°F) for short-term storage (up to 24 hours). The sample should not be frozen. The sample must be allowed to reach room temperature before analysis.

Complementary Tests
Calcium should be determined in conjunction with measurements of inorganic phosphate, albumin, total protein, and glucose. Ionized calcium measurement will provide more specific information related to the physiologic form of calcium.

Reaction Sequence
\[\text{Ca}^{2+} + \text{Arsenazo III} \xrightarrow{\text{pH 5.6}} \text{colored complex} \]
Chloride (Cl)
Chloride is the major anion, predominantly in the extracellular spaces, where it maintains cellular integrity by influencing osmotic pressure. Chloride determination is significant in monitoring acid-base balance and water balance.

Principal Reason for Performing the Test
Low chloride levels are usually found in severe vomiting or diarrhea, ulcerative colitis, severe burns, heat exhaustion, fever, and acute infections. Elevated values are found in dehydration, hyperventilation, anemia, and cardiac decompensation.

Most Common Abnormalities Indicated by the Test
Hyperchloremia—if elevated with sodium then the same cause of hypernatremia. Without a concurrent increase in sodium: hyperchloremic acidosis: GI or renal loss of HCO₃.
Hypochloremia (without related change in sodium)—upper GI tract loss (vomiting).

Sample Type and Precautions
Avoid hemolysis—sample should be run as soon as possible after serum or plasma is separated from the cells or clot. If plasma is being collected, use only lithium heparinized samples.
Do not freeze samples for use with the Catalyst One analyzer.

Complementary Tests
Sodium, potassium, and chloride should always be assayed together to determine electrolyte balance. If sodium, potassium, chloride, and bicarbonate are measured together, accurate assessment of metabolic acid-base physiology is possible.

Cholesterol (CHOL)
Serum cholesterol occurs predominantly at high concentration in the esterified form; the remainder is in the free form. Cholesterol is synthesized in the liver and other tissues and is also absorbed in the free form from the small intestine. It is esterified in the liver and is the precursor of steroid hormones.
Cholesterol is broken down in the liver to bile acids and eliminated via the bile duct.

Principal Reason for Performing the Test
May be a marker for cholestasis or endocrine disease, such as hypothyroidism, hyperadrenocorticism, diabetes mellitus, as well as nephrotic syndrome.

Most Common Abnormality Indicated by the Test
Increased cholesterol—hypothyroidism, postprandial, nephrotic syndrome.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. Blood should not be drawn within 12 hours of a meal. If plasma is being collected, use only lithium heparinized samples.

Complementary Tests
Cholesterol measurements should not be performed in isolation but as part of a profile of tests to investigate endocrine, hepatic, and renal disease. If high cholesterol is found in the absence of diabetes, hepatic, or renal disease, hypothyroidism may be present. This can be evaluated by measuring thyroid function.
Creatine Kinase (CK)
Creatine kinase is found at high activity only in the cytoplasm of cardiac and skeletal muscle. This enzyme catalyzes the reversible phosphorylation of creatine by ATP to creatine phosphate and ADP. Creatine phosphate is the major source of high-energy phosphate used in muscle contraction.

Principal Reason for Performing the Test
To identify injury to skeletal or cardiac muscle.

Most Common Abnormality Indicated by the Test
Skeletal muscle lesions attributable to trauma or vigorous exercise.

Sample Type and Precautions
Samples must be processed and centrifuged immediately after drawing blood. Blood samples should be taken within 6 hours of a suspect lesion. It is important to determine that the patient has not been exercised vigorously during the 12 hours prior to sampling. This may cause marked increases in creatine kinase activity. Remove plasma or serum from the cells or clot. If plasma is being collected, use only lithium heparinized samples. EDTA and fluoride/oxalate will reduce creatine kinase results.

Complementary Tests
Creatine kinase determination provides a specific, sensitive indication of muscle cell damage. Aspartate aminotransferase and lactate dehydrogenase activities may also be measured but are less specific and show smaller corresponding increases when muscle damage is present.

Reaction Sequence

\[
\text{lipoprotein} \xrightarrow{\text{surfactant TX100}} \text{cholesterol + cholesterol esters + proteins}
\]

\[
\text{cholesterol esters} + \text{H}_2\text{O} \xrightarrow{\text{cholesterol ester hydrolase}} \text{cholesterol} + \text{fatty acids}
\]

\[
\text{cholesterol} + \text{O}_2 \xrightarrow{\text{cholesterol oxidase}} \text{cholest-4-en-3-one} + \text{H}_2\text{O}_2
\]

\[
\text{H}_2\text{O}_2 + \text{leuco dye} \xrightarrow{\text{peroxidase}} \text{dye} + 2\text{H}_2\text{O}
\]
Creatinine (CREA)
Creatinine is a degradation product of creatine in muscle metabolism. The daily production of creatinine is fairly constant and not influenced markedly by age, diet, exercise, or catabolism. Creatinine is eliminated from the body by glomerular filtration and tubular secretion in the kidneys.

Principal Reasons for Performing the Test
As an indicator of renal disease and/or an index of glomerular filtration rate.

Most Common Abnormality Indicated by the Test
Increased creatinine—prerenal, postrenal, and renal azotemia.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples.

Interfering substances, such as creatine, in a sample can affect the analyzer’s ability to accurately provide creatinine results. When the analyzer detects such an interfering substance, dilution of the sample may be required to obtain an accurate creatinine value.

Complementary Tests
A complete urinalysis with a refractometry specific gravity measurement is essential for proper interpretation of increases in creatinine. Creatinine determinations should usually be performed in conjunction with measurements of BUN, inorganic phosphate, total protein, and albumin. A complete blood count (CBC) can sometimes demonstrate changes such as nonregenerative anemia with chronic renal failure.

Reaction Sequence
\[
\text{creatinine} + \text{H}_2\text{O} \xrightarrow{\text{amidohydrolase}} \text{creatinine} \\
\text{creatinine} + \text{H}_2\text{O} \xrightarrow{\text{aminohydrolase}} \text{sarcosine} + \text{urea} \\
\text{sarcosine} + \text{O}_2 + \text{H}_2\text{O} \xrightarrow{\text{oxidase}} \text{glycine} + \text{formaldehyde} + \text{H}_2\text{O}_2 \\
\text{H}_2\text{O}_2 + \text{leuco dye} \xrightarrow{\text{peroxidase}} \text{dye} + 2\text{H}_2\text{O}
\]

Fructosamine (FRU)
Fructosamine is glycated albumin or other proteins. Its concentration is related to blood glucose concentration during the preceding 2 to 3 weeks.

Principal Reason for Performing the Test
Measurement of fructosamine concentration as part of the routine evaluation of a diabetic patient undergoing therapy. It provides information about the status of glycemic control during the 2–3 weeks prior to evaluation. In cats, fructosamine concentrations can be measured to identify if a stress response or diabetes mellitus is the reason for high blood glucose concentrations. In addition, during management of diabetes in both canine and feline patients, fructosamine concentration is used to clarify discrepancies between the history and physical examination findings and serial blood glucose concentration measurements and it is also used to assess the effectiveness of therapy.
Most Common Abnormality Indicated by the Test
Increased fructosamine indicates lack of or inadequate glucose regulation due to diabetes mellitus. Fructosamine concentrations increase with poor glycemic control and decrease when glycemic control improves. Less common, a low fructosamine may indicate prolonged hypoglycemia.

Sample Type and Precautions
IMPORTANT: FRU is currently available in two different formulations and their supported sample types vary:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Supported Sample Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-0000131</td>
<td>Serum</td>
</tr>
<tr>
<td>99-0003341</td>
<td>Serum or lithium heparin-treated plasma</td>
</tr>
<tr>
<td></td>
<td>(you can use the plasma generated from a</td>
</tr>
<tr>
<td></td>
<td>Catalyst* Lithium Heparin Whole Blood Separator)</td>
</tr>
</tbody>
</table>

Note: Please refer to part number and labeling on the slide box for supported sample type information.

It is important to separate the sample from the red blood cells as promptly as possible.

Serum is preferred for fructosamine testing as customer experience shows that it more consistently provides good quality samples.

Examine the serum or plasma for hemolysis. Although IDEXX dry-slide technology dramatically reduces the effect of this interfering substance, marked hemolysis can result in inaccurate fructosamine results. Typically, marked hemolysis will lower the reported value on the Catalyst analyzers.

Reaction Sequence
Fructosamine + NBT → formazan dye (measured at 560 nm)

Gamma-glutamyltransferase (GGT)
The enzyme gamma-glutamyltransferase is membrane-bound. It is present in large quantities in the kidney medulla and cortex and to a lesser extent in the small intestinal mucosa and bile ductular epithelium.

Despite the high activity of gamma-glutamyltransferase in the kidney, renal disease does not result in high enzyme activity in the serum sample. GGT in the kidney is primarily related to tubular lining epithelial cells and the enzyme is localized to the apical portion of the cell. Pathologic changes in these tubular epithelial cells result in loss of GGT directly into the urine. Measurement of GGT in the urine can prove to be a sensitive indicator of tubular epithelial cell injury/nephrotoxicity.

Principal Reason for Performing the Test
As an indicator of cholestasis or gallbladder disease.

Most Common Abnormality Indicated by the Test
Increased GGT—cholestasis.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples. Hemolyzed specimens should not be used. Do not use fluoride/oxalate as an anticoagulant.

Complementary Tests
Serum gamma-glutamyltransferase activity is usually determined in conjunction with other tests of hepatic function or damage.
Reaction Sequence

\[L\gamma\text{-glutamyl}p\text{-nitroanilide} + \text{glycylglycine} \xrightarrow{\text{GGT}} p\text{-nitroaniline} + \gamma\text{-glutamyl} \text{glycylglycine} \]

Glucose (GLU)

Glucose is the principal source of energy in monogastric mammals. The circulating concentration in the healthy animal is maintained within narrow limits.

Principal Reason for Performing the Test
To investigate carbohydrate metabolism.

Most Common Abnormality Indicated by the Test
Increased glucose—diabetes mellitus; glucocorticoid influence; epinephrine influence.

Sample Type and Precautions
For glucose determinations, the animal should have been fasted for 5–8 hours before sampling. Hemolysis may affect glucose results.

For plasma samples: Use only lithium heparinized samples. When blood is collected in lithium heparin, it is important that the sample be centrifuged immediately after collection. In this anticoagulant, glycolysis occurs quite rapidly in the presence of red blood cells and the glucose concentration in the sample can diminish at up to 10% an hour at room temperature. Remove plasma promptly from the red blood cells. Hemolyzed specimens should not be used.

For serum samples: Do not centrifuge serum samples until clotting is complete. Samples must be centrifuged completely. Remove serum promptly from the clot to avoid metabolism of glucose by the cells. A maximum of 30 minutes between drawing and separation from the clot is recommended. Hemolyzed specimens should not be used.

Complementary Tests
When the patient is a diagnosed diabetic, glucose tests may be performed in isolation. It is, however, useful to perform other tests for renal and hepatic function and lipid metabolism to monitor secondary effects of poorly controlled diabetes. Because stress in companion animals, particularly cats, can significantly raise glucose above the reference range, a fructosamine level should be considered in suspected cases of diabetes mellitus. A concurrent urinalysis should also be performed to evaluate for the presence of glucose and ketones.

Reaction Sequence

\[\beta\text{-D-glucose} + O_2 + H_2O \xrightarrow{\text{glucose oxidase}} \text{D-gluconic acid} + H_2O_2 \]

\[2H_2O_2 + 4\text{-aminoantipyrine} + 1,7\text{-dihydroxynaphthalene} \xrightarrow{\text{peroxidase}} \text{red dye} \]

Inorganic Phosphate (PHOS)

Phosphorus plays a major role as a metabolic intermediate and is a constituent of nucleic acids, phospholipids, and nucleotides. Phosphates are also important components of buffering systems within the body fluids. Phosphate and calcium are absorbed in the small intestine. Absorption is influenced by the presence of other minerals, nutrients, vitamins, and intestinal pH. Calcium and phosphorous metabolism are interdependent.
Principal Reason for Performing the Test
As a measure of glomerular filtration rate.

Most Common Abnormality Indicated by the Test
Increased inorganic phosphate—decreased glomerular filtration.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples. Do not use oxalate, fluoride, citrate, or EDTA as anticoagulants. Blood samples must be processed and centrifuged as soon as possible after collection as phosphates are released quickly from the red blood cells. Hemolysis can result in marked increases in phosphate concentration.

Complementary Tests
Inorganic phosphate determination should be performed in conjunction with measurements of calcium, albumin, total protein, and glucose. If renal disease is suspected, BUN, creatinine, albumin, total protein, and a complete urinalysis should also be determined.

Reaction Sequence
\[
\text{inorganic phosphate} + \text{ammonium molybdate} \xrightarrow{\text{pH 4.2}} \text{ammonium phosphomolybdate complex}
\]

\[
\text{ammonium phosphomolybdate complex} \xrightarrow{\text{p}-\text{methylaminophenol sulfate}} \text{heteropolymolybdate blue}
\]

Lactate Dehydrogenase (LDH)
The enzyme lactate dehydrogenase is present in large amounts in all organs and tissues (including red blood cells) of most animals. It is found in the cell cytoplasm and is released into the blood during reversible and irreversible (necrosis) cell injury. The test is not a specific or sensitive indicator of damage to any organ or tissue.

Note: The normal range of lactate dehydrogenase in the dog and cat is wide, as can be the intra-animal variation from day to day. Consequently, small increases in activity due to minimal organ damage are difficult to identify. The measurement of lactate dehydrogenase is a somewhat traditional test whose diagnostic value is limited in practice.

Principal Reason for Performing the Test
To investigate damage to liver, cardiac or skeletal muscle.

Most Common Abnormality Indicated by the Test
Increased activity is usually associated with hepatic parenchymal lesions.

Sample Type and Precautions
Remove plasma or serum promptly from the cells or clot and analyze as soon as possible. If plasma is being collected, use only lithium heparinized samples. Fluoride/oxalate and EDTA should not be used as anticoagulants.

Hemolysed specimens should not be used because LDH contamination from red blood cells will occur.

Complementary Tests
Lactate dehydrogenase activity is usually determined in conjunction with other tests of liver, cardiac, or skeletal muscle function or damage.
Reaction Sequence

pyruvate + NADH + H⁺ $\xrightarrow{\text{LDH}}$ lactate + NAD⁺

Lactate (LAC)

Lactate is produced by anaerobic metabolism of glucose and its concentration depends on relative rates of production in muscle cells and erythrocytes and metabolism in the liver.

Principal Reason for Performing the Test

Elevated lactate levels usually are caused by overproduction or under metabolism. They result from tissue hypoxia, diabetes mellitus, malignancies, ethanol or methanol ingestion, and metabolic acidosis.

Most Common Abnormality Indicated by the Test

Hypoxia secondary to severe exercise, shock, hypovolemia, cardiac disease, pulmonary edema, and seizures.

Sample Type and Precautions

Use lithium heparinized or Fl/oxalated samples. When using lithium heparinized samples, separate the plasma from the red cells within 5 minutes of collection.

Complementary Tests

CBC, biochemical panel, complete urinalysis, and blood gas.

Reaction Sequence

$L^-{(+)}$-lactic acid + O_2 $\xrightarrow{\text{lactate oxidase}}$ pyruvate + H_2O_2

$2H_2O_2 + 4$-aminoantipyrine + $1,7$-dihydroxynaphthalene $\xrightarrow{\text{peroxidase}}$ red dye

Lipase (LIPA)

Lipase is secreted by the pancreas and to a lesser extent by the gastrointestinal mucosa. Lipase is a relatively sensitive indicator of pancreatic pathology (as compared to amylase). Generally a greater than threefold increase above the reference range is supportive of pancreatitis.

Principal Reason for Performing the Test

As an indicator of acute pancreatitis.

Most Common Abnormality Indicated by the Test

Acute pancreatitis.

Sample Type and Precautions

Blood samples should be taken within one day of the onset of symptoms suggesting acute pancreatitis. Promptly remove plasma or serum from the cells or clot. If plasma is being collected, use only lithium heparinized samples. Do not use oxalate/fluoride, citrate, or EDTA anticoagulants. Lipemia and icterus may increase lipase results.
Complementary Tests
Lipase and amylase are usually determined in conjunction with tests of hepatic and pancreatic function or damage. Canine and feline pancreas-specific lipase tests should be performed in questionable cases.

Reaction Sequence

\[
\begin{align*}
1\text{-oleoyl-2,3-diacylglycerol} & \xrightarrow{\text{lipase, colipase}, \ pH \ 8.5} 2,3\text{-diacylglycerol} + \text{oleic acid} \\
2,3\text{-diacylglycerol} & \xrightarrow{\text{diacetylase}} \text{glycerol} + \text{acetic acid} \\
\text{glycerol} + \text{ATP} & \xrightarrow{\text{glycerol kinase}, \ MgCl}_2 L\text{-α-glycerophosphate} + \text{ADP} \\
L\text{-α-glycerophosphate} + \text{O}_2 & \xrightarrow{\text{L-α-glycerophosphate oxidase}} \text{dihydroxyacetone phosphate} + H_2O_2 \\
H_2O_2 + \text{leuco dye} & \xrightarrow{\text{peroxidase}} \text{dye} + 2H_2O
\end{align*}
\]

Magnesium (Mg)
Magnesium plays an important intracellular role in the activation of enzymes including those responsible for many anabolic and catabolic processes. It is also involved in the formation and destruction of acetylcholine, which governs the transmission of electrical impulses at the neuromuscular junction. The adrenal, thyroid, and parathyroid glands appear to regulate serum magnesium concentration.

Principal Reason for Performing the Test
The importance of measuring serum magnesium concentration in dogs and cats has not been fully investigated. However, there have been reports of hypomagnesemia in dogs following the removal of the parathyroid gland.

Most Common Abnormalities Indicated by the Test
Increased magnesium—decreased glomerular filtration.
Decreased magnesium—parathyroid gland removal.

Sample Type and Precautions
Blood samples should be centrifuged immediately after collection as magnesium is released from hemolysed erythrocytes and can give erroneously high magnesium results. Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples. Do not use oxalate/citrate or EDTA as anticoagulants. Blood collection tubes preserved with sodium fluoride cause lower results.

Complementary Tests
See tests listed under Endocrine Profile in the “Profile Selection” table on page 54.
Phenobarbital (PHBR)
Phenobarbital is a commonly used drug used to treat seizures in a variety of species. Phenobarbital levels should be evaluated during initial dosing and throughout treatment to ensure that the blood levels are within the targeted therapeutic range.

Principal Reasons for Performing the Test
Phenobarbital is a controlled barbiturate medication that is used to treat veterinary patients that have seizures. The dosage of phenobarbital needs to remain within a specific range to be effective. If the level is <10 µg/mL, there may not be a sufficient level of phenobarbital to prevent seizures. If the level >30 µg/mL in cats or >40 µg/mL in dogs, phenobarbital can be toxic and potentially life threatening.

In most patients, steady state is achieved after 2–3 weeks of consistent dosing with phenobarbital. Once steady state is achieved, timing of sample collection is not important in more than 90% of patients. However, there can be variability of the phenobarbital half-life in a small percentage of patients. Therefore, if toxicity is suspected, a peak sample (4–5 hours post-pill) may be helpful, and if breakthrough seizures are occurring and inadequate dosing is suspected, a trough level (collected immediately prior to the next dose) may be helpful.

Most Common Abnormalities Indicated by the Test
Over or under dosage of medication.

Sample Type and Precautions
Do not use separator tubes as contact with the gel may decrease levels.

Complementary Tests
CBC, full chemistry panel, urinalysis, bile acids (minimally 2 times per year)

Potassium (K)
Potassium is the major cation of intracellular fluid, where it is the major buffer within the cell, facilitates nerve conduction and muscle function, and helps maintain osmotic pressure. Abnormally high or low potassium levels cause changes in muscle irritability, respiration, and myocardial function.
Principal Reasons for Performing the Test
High potassium (hyperkalemia) is usually found in urinary obstruction, renal failure, metabolic or respiratory acidosis, and hypoadrenocorticism as well as excessive hemolysis for horses, cattle, cats, and some breeds of dogs. Decreased values (hypokalemia) usually follow excessive salt loss through severe vomiting or diarrhea, inadequate intake, anorexia (especially cats), malabsorption, and severe burns.

Most Common Abnormalities Indicated by the Test
Hyperkalemia—renal failure, postrenal obstruction.
Hypokalemia—excessive loss of potassium.

Sample Type and Precautions
Remove plasma or serum promptly from cells or clot. If plasma is being collected, use only lithium heparinized samples. Avoid hemolysis.

Do not freeze samples for use with the Catalyst One analyzer.

Complementary Tests
Sodium, potassium, and chloride should always be assayed together to determine electrolyte balance. The additional measurement of bicarbonate will allow accurate assessment of metabolic acid-base physiology.
ACTH stimulation test for suspect cases of hypoadrenocorticism.

Reaction Sequence
Potassium + ionophore — fluorescent dye → fluorescence change

Sodium (Na)
Sodium is the major cation of extracellular fluid, where it maintains osmotic pressure, acid-base balance, and transmits nerve impulses. The body maintains total sodium content, and only slight changes are found even under pathologic conditions.

Principal Reasons for Performing the Test
To evaluate electrolyte status in conjunction with potassium and chloride levels.

Low sodium (hyponatremia) is usually caused by a relative excess of body water. Reduced levels may be due to low intake, loss through vomiting or diarrhea plus adequate water and inadequate salt replacement, salt-losing nephropathy, osmotic diuresis, metabolic acidosis, and various glandular conditions.
Elevated values (hypernatremia) usually follow water loss in excess of salt loss through profuse sweating, severe vomiting or diarrhea, inadequate water intake, and dehydration of renal sodium conservation in hyperaldosteronism.

Most Common Abnormality Indicated by the Test
Hypernatremia secondary to dehydration, gastrointestinal fluid loss (vomiting or diarrhea).

Sample Type and Precautions
Remove plasma or serum promptly from cells or clot. If plasma is collected, use only lithium heparinized samples. Avoid hemolysis.

Do not freeze samples for use with the Catalyst One analyzer.
Complementary Tests
Sodium, potassium, and chloride should always be assayed together to determine electrolyte balance. The additional measurement of bicarbonate will allow accurate assessment of metabolic acid-base physiology.

Reaction Sequence
Sodium + ionophore → fluorescent dye → fluorescence change

Total Bilirubin (TBIL)
Hemoglobin from degenerated erythrocytes is converted to bilirubin in the monocyte-macrophage system. Free unconjugated bilirubin is transported to the liver bound to albumin, where it is conjugated with glucuronic acid and eliminated in the bile. In obstructive liver disease, the concentration of conjugated bilirubin in the blood increases.

During intravascular or extravascular hemolysis, very large numbers of erythrocytes may be destroyed quickly and the conjugation mechanism in the liver may become overloaded so that high concentrations of unconjugated bilirubin are found in the blood. If the loss of hemoglobin and erythrocytes is very large, anoxia may occur. Hepatocyte dysfunction follows leading to cellular swelling, which occludes the bile canaliculi preventing the elimination of conjugated bilirubin. A concomitant rise in circulating conjugated bilirubin then occurs.

Principal Reason for Performing the Test
To detect hepatobiliary disease and excessive erythrocyte destruction.

Note: In healthy dogs and cats, the concentration of total bilirubin in the serum is very low. Visual inspection of the sample will frequently indicate whether bilirubin determination is necessary (serum and plasma only).

Most Common Abnormality Indicated by the Test
Increased bilirubin—cholestatic liver disease (conjugated bilirubin) and hepatic insufficiency (unconjugated bilirubin), hemolytic disease (unconjugated and possible conjugated bilirubin), and intrahepatic obstruction.

Sample Type and Precautions
Remove plasma or serum promptly from cells or clot. Samples should be analyzed immediately as bilirubin degrades rapidly in light. If immediate analysis is impossible, the sample must be kept in the dark and preferably at 4°C–8°C (36°F–40°F) in a refrigerator. Sample must be allowed to come to room temperature before analysis. If plasma is collected, use only lithium heparinized samples. It is critical that samples be properly centrifuged. Otherwise, leukocytes and platelets may remain in suspension, even when red blood cells have been separated. Cellular material on the slide may cause significant positive error. Also, hemoglobin increases total bilirubin results, so avoid even moderately hemolyzed samples.

Complementary Tests
Total bilirubin should be determined with other tests of hepatic function or damage. Hematocrit should also be performed to eliminate or confirm the presence of hemolytic disease. Determination of urinary urobilinogen and bilirubin may also be useful.

Reaction Sequence

\[
\text{total bilirubin} \xrightarrow{4\text{-}(N\text{-carboxymethyl)limbicyan}	ext{-benzenediazoxom-hexaurephosphoryl}} \text{azobilirubin} \xrightarrow{\text{chromophores}}
\]
Total Protein (TP)

The serum total protein concentration comprises all the proteins found in the aqueous phase of the blood. In healthy animals, albumin is the major single component. The remaining proteins are the alpha, beta, and gamma globulins. The globulin concentration is determined by subtracting the albumin from the total protein.

Principal Reason for Performing the Test

Total protein measurement may provide useful information when used in combination with tests to investigate hepatic and renal function, the degree of hydration, protein-losing enteropathies, or gammopathies. The test is nonspecific and, if performed in isolation, will be unlikely to provide diagnostic information.

Most Common Abnormalities Indicated by the Test

- **Increased total protein**—dehydration, inflammatory disease.
- **Decreased total protein**—loss of proteins through blood loss and gastrointestinal loss, decreased albumin associated with protein-losing nephropathy and enteropathy, and decreased albumin associated with hepatic insufficiency and inflammatory disease.
- Impaired renal and hepatic function, dehydration, and gastrointestinal lesions.

Sample Type and Precautions

Remove plasma or serum promptly from the cells or clot. If plasma is collected, use only lithium heparinized samples. Moderate-to-marked hemolysis can result in false high total protein concentration.

Results obtained from the analysis of plasma may be slightly higher than serum due to the fibrinogen that remains in the plasma.

Complementary Tests

Total protein concentration is usually determined in conjunction with the measurement of albumin and other tests of renal and hepatic function.

Reaction Sequence

\[\text{protein} + \text{copper tartrate} \xrightarrow{\text{LiOH}} \text{colored complex} \]

Total T₄ (TT₄)

An enzyme-linked immunosorbent assay (ELISA) for the quantitative measurement of total T₄ (thyroxine) in canine, feline, and equine patients. With a total T₄ test, you can assess thyroid function, provide comprehensive one-visit screening for feline hyperthyroidism, presumptive canine or equine hypothyroidism, as well as monitor response to treatment and adjust dosages immediately.

Principal Reason for Performing the Test

To screen, diagnose, and monitor thyroid disease. The measurement of total thyroxine helps veterinary practitioners to assess thyroidal function by measuring the bound and unbound thyroxine in the blood. Thyroxine is the principal hormone secreted by the thyroid gland and is critical to metabolic processes.

Most Common Abnormality Indicated by the Test

Hyperthyroidism—an elevated TT₄ is consistent with hyperthyroidism. Naturally occurring hyperthyroidism is a common endocrine disorder in cats and rare in dogs.
Hypothyroidism—a decreased TT4 is consistent with but not necessarily definitively diagnostic of hypothyroidism. Naturally occurring hypothyroidism is a common endocrine disorder in dogs and rare in cats. Hypothyroidism can be seen in horses as well.

Nonthyroidal illness (NTI)—nonthyroidal illness can affect TT4 levels (and potentially other thyroid tests as well). Nonthyroidal illness can lower TT4 levels, potentially into the hypothyroid range. The more severe the nonthyroidal illness, the greater the potential impact on TT4 levels.

Sample Type and Precautions
For use with serum, plasma, and whole blood (when using the Catalyst Whole Blood Separator).

Remove plasma or serum promptly from the cells or clot. If plasma is being collected, use only lithium heparinized samples. Hemolyzed samples should not be used. Do not use fluoride/oxalate as an anticoagulant.

Complementary Tests
Total T4 should be evaluated in conjunction with a comprehensive history, physical examination, CBC, complete biochemical profile, and urinalysis to provide a comprehensive database of information in the diagnosis or suspicion of thyroid disease.

In dogs with low or low normal T4 results and with consistent clinical signs, evaluate free T4 (fT4) and endogenous thyroid-stimulating hormone (TSH) and possibly thyroglobulin autoantibodies (TgAA) to aid in confirming hypothyroidism.

Cats with consistent clinical signs and total T4 (TT4) values in the borderline high range (gray zone) may have early hyperthyroidism or a concurrent nonthyroidal illness (NTI). In these cases, consider a free T4 (fT4), a T3 suppression test or radionuclide thyroid imaging to aid in confirming the diagnosis.

Triglycerides (TRIG)
Triglycerides are usually present in the diet of dogs and cats, especially when the animals are fed table scraps. They are also synthesized in the liver, mainly from carbohydrates, to provide a secondary energy source and are stored in fatty tissue. Their hydrolysis to mono- and diglyceride glycerol and free fatty acids is catalyzed by pancreatic lipase.

Principal Reason for Performing the Test
To detect abnormalities in lipid metabolism.

Most Common Abnormality Indicated by the Test
Increased triglycerides—High-fat diet or abnormalities in fat metabolism.

Sample Type and Precautions
Blood should not be drawn within 12 hours of a meal.

Remove plasma or serum promptly from the cells or clot. If plasma is collected, use only lithium heparinized samples. Grossly lipemic specimens probably have very high triglycerides and should be diluted before analysis.

Complementary Tests
Triglycerides should not be measured in isolation. If the sample is turbid or milky, the test should be determined in conjunction with measurements of cholesterol and glucose, and hepatic and renal function tests. Also consider repeat sampling if the patient has not been fasted for 12 hours.
Reaction Sequence

Lipoproteins $\xrightarrow{\text{surfactant}}$ triglycerides + proteins

Triglycerides + H_2O $\xrightarrow{\text{lipase}}$ Glycerol + fatty acids

Glycerol + ATP $\xrightarrow{\text{glycerol kinase}} \text{MgCl}_2$ L-α-glycerophosphate + ADP

L-α-glycerophosphate + O_2 $\xrightarrow{\text{L-α-glycerophosphate oxidase}}$ dihydroxyacetone phosphate + H_2O_2

H_2O_2 + leuco dye $\xrightarrow{\text{peroxidase}}$ dye + H_2O

Uric Acid (URIC)

Uric acid determinations are useful in avian patients and dalmatians in place of urea determinations. In all dogs (except dalmatians) with diffuse hepatic disease, there is marked elevation of blood uric acid above the normal levels of <1 mg/dL.

Principal Reason for Performing the Test

As an indicator of the severity of renal disease in avian populations (and dalmatians).

Most Common Abnormality Indicated by the Test

Increased uric acid—prerenal, postrenal, and renal azotemia associated with decreased glomerular filtration rate.

Sample Type and Precautions

Remove plasma or serum promptly from the cells or clot. If plasma is collected, use only lithium heparinized samples. Plasma collected from sodium fluoride, citrate, or EDTA preservative should not be used.

Complementary Tests

Creatinine, UCRE/CREA, UPRO

Reaction Sequence

$2\text{H}_2\text{O} + \text{uric acid} \xrightarrow{\text{uricase}} \text{allantoin} + \text{H}_2\text{O}_2 + \text{CO}_2$

$\text{H}_2\text{O}_2 + \text{leuco dye} \xrightarrow{\text{peroxidase}} \text{dye}$

Urine Creatinine (UCRE)

Urine creatinine is determined so that the concentration of electrolytes filtered or lost through the glomeruli or renal tubules, such as urinary protein or cortisol, can be quantitated, compared, and expressed as ratios with diagnostic significance.
Principal Reason for Performing the Test
To be performed with urine protein in order to determine the urine protein:creatinine ratio (UPC).

Most Common Abnormality Indicated by the Test
Proteinuria indicating early renal disease, protein-losing nephropathy.

Sample Type and Precautions
Urine, preferably collected through cystocentesis, collected in a clean container. An inactive urinary sediment should be demonstrated and urinary tract infection (UTI) via culture and sensitivity should be ruled out before performing, as UTI may mildly to moderately raise the UPC.

Complementary Tests
Complete urinalysis with culture and sensitivity. Serum chemistries, such as creatinine, BUN, albumin, and globulin.
CBC
SNAP* 4Dx* Test

Storage Information
Handle and store urine samples in closed containers to avoid evaporation and contamination. Samples may be stored at room temperature for up to 3 days (refrigeration preferred). Frozen samples can be stored indefinitely.

Reaction Sequence
\[
\text{creatinine} + \text{H}_2\text{O} \xrightarrow{\text{amidohydrolase}} \text{creatinine}
\]
\[
\text{creatinine} + \text{H}_2\text{O} \xrightarrow{\text{amidohydrolase}} \text{sarcosine} + \text{urea}
\]
\[
\text{sarcosine} + \text{O}_2 + \text{H}_2\text{O} \xrightarrow{\text{oxidase}} \text{glycine} + \text{formaldehyde} + \text{H}_2\text{O}_2
\]
\[
\text{H}_2\text{O}_2 + \text{leuco dye} \xrightarrow{\text{peroxidase}} \text{dye} + 2\text{H}_2\text{O}
\]

Urine Protein (UPRO)
Urinary protein is determined and compared to the concentration of creatinine in order to assess the level of renal protein (glomeruli and tubular) loss to determine the urine protein:creatinine (UPC) ratio.

Principal Reason for Performing the Test
To be performed with urine creatinine in order to determine the urine protein:creatinine (UPC) ratio.

Most Common Abnormality Indicated by the Test
Proteinuria indicating early renal failure, protein-losing nephropathy.

Sample Type and Precautions
Urine, preferably collected through cystocentesis, collected in a clean container. An inactive urinary sediment should be demonstrated and urinary tract infection (UTI) via culture and sensitivity should be ruled out before performing as UTI may mildly to moderately raise the UPC.
Complementary Tests
Complete urinalysis with culture and sensitivity. Serum chemistries such as creatinine, BUN, albumin, and globulin.

CBC

SNAP 4Dx Test

Storage Information
Handle and store urine samples in closed containers to avoid evaporation and contamination. Samples may be stored at room temperature for up to 4 hours. Refrigerated samples may be stored up to 3 days. Do not freeze samples.

Do not use hemolyzed specimens as hemoglobin increases results significantly. Intact red blood cells can be removed via centrifugation.

Reaction Sequence

$\text{Mo}^3+ + \text{pyrocatechol violet dye} + \text{oxalate} + \text{protein} \rightarrow \text{colored complex dye}$

Medical Protocol Descriptions

Ammonia Protocol
Baseline ammonia levels should be assessed in animals with signs of hepatic encephalopathy or in patients suspected of having portosystemic shunts (PSS). Ammonia tolerance tests may be considered to evaluate for PSS where bile acids are not considered (for example, in Maltese).

Ammonia tolerance test: A baseline sample is drawn after the patient has been fasted for 12 hours. Ammonium chloride (0.1 g/kg) by mouth via stomach tube or gelatin capsules. A second sample is drawn 30 minutes after ammonium chloride administration.

Note: Vomiting during the procedure will invalidate results.

Sample Requirements: 1 mL heparinized plasma, separated from RBCs. Do not use serum.

Storage/Stability: 48 hours—store plasma frozen

Interferences: Hemolysis, glucose levels over 600 mg/dL (33.33 mmol/L), high BUN values

Comments: Anticoagulated blood must be centrifuged immediately after collection. Separate plasma and place it in a glass container (RTT). Freeze immediately and keep frozen if not running sample immediately.

Note: Ammonia levels increase with time.

UPC Protocol

Principle Reason for Performing Test: To aid in the diagnosis of protein-losing nephropathies such as glomerulonephritis and amyloidosis and as an early marker of chronic renal failure.

Includes: Urine protein (URO), urine creatinine (UCRE), protein:creatinine (UPC) ratio

Sample Requirements: 2 mL urine in a sterile container

Storage/Stability: 48 hours at 2°C–8°C (36°F–46°F)

Interferences: Gross hematuria, pyuria.

Complementary Tests: Complete urinalysis with culture and sensitivity. Serum chemistries such as creatinine, BUN, albumin, globulin; CBC; SNAP* 4Dx* Test; and imaging studies.
Interpretation: Proteinuria requires proof of persistence and localization to prerenal, renal, or postrenal origins. Prove persistence of proteinuria by repeating the UPC ratio at least three times, a minimum of 2 weeks apart.

- Prerenal proteinuria is possible when a CBC and a biochemical profile detect hemolysis, hyperglobulinemia or evidence of muscle damage. Recommend investigation and management for the underlying cause.

- Postrenal proteinuria is caused by urogenital tract diseases, hematuria, or pyuria. Repeat the test with a cystocentesis sample or evaluate urine sediment for hemorrhage or inflammation. Consider a urine culture. Recommend investigation and management for the underlying cause.

- Renal proteinuria: evaluate in the face of azotemia.

Nonazotemic, persistent, renal proteinuria (dogs and cats):

- UPC $<$0.5 = within reference range
- UPC 0.5–1.0 = questionable, repeat at appropriate range
- UPC 1.0–2.0 = excessive proteinuria; recommend investigation for underlying systemic diseases
- UPC 2.0 = excessive proteinuria; recommend investigation for underlying systemic diseases and medical management

Azotemic, persistent, renal proteinuria (dogs):

- UPC $<$0.5 = warrant monitoring and investigation
- UPC \geq0.5 = excessive proteinuria; recommend investigation for underlying systemic diseases and medical management

Azotemic, persistent, renal proteinuria (cats):

- UPC $<$0.4 = warrant monitoring and investigation
- UPC \geq0.4 = excessive proteinuria; recommend investigation for underlying systemic diseases and medical management
Total T4 Protocols

Canine hypothyroidism suspected

Common clinical signs in dogs
- Obesity
- Skin disease
- Lethargy
- Mental dullness
- Exercise/Cold intolerance

Initial database
- Total T4
- CBC
- Chemistry with electrolytes
- Complete urinalysis

Low T4 with NTI
<1.0 µg/dL
(<13.0 nmol/L)
Address NTI

Low T4
<1.0 µg/dL
(<13.0 nmol/L)

Low Normal T4
1.0–2.0 µg/dL
(13.0–26.0 nmol/L)

Normal T4
2.0–4.0 µg/dL
(26.0–51.0 nmol/L)

fT4 + TSH ± TgAA

Low T4 ± high TSH ± positive TgAA
Hypothyroidism likely
Clinical trial

Normal fT4 and TSH negative TgAA
Hypothyroidism unlikely
Repeat testing in 4–6 weeks if hypothyroidism still suspected

CBC = Complete blood count
Note: 1 µg/dL is equal to 12.87 nmol/L. A result that falls within the low normal range of the assay should be considered ambiguous.
Appendices

If strong suspicion of hyperthyroidism still exists, consider retesting in 4–6 weeks or a technetium scan.

CBC = Complete blood count

Note: 1 µg/dL is equal to 12.87 nmol/L. A result that falls within the gray zone of the assay should be considered ambiguous.

Feline hyperthyroidism suspected

Common clinical signs in cats
- Weight loss
- Hyperactivity
- Polyphagia
- Palpable goiter
- Unkempt coat

Initial database
- Total T4
- CBC
- Chemistry with electrolytes
- Complete urinalysis

Low T4
- <0.8 µg/dL
 - (<10.0 nmol/L)
 - Euthyroid sick or iatrogenic

Normal T4
- 0.8–4.7 µg/dL
 - (10.0–30.0 nmol/L)

High T4
- >4.7 µg/dL
 - (>60.0 nmol/L)

Normal T4 (gray zone)
- 2.3–4.7 µg/dL
 - (30.0–60.0 nmol/L)

Low or normal fT4

Hyperthyroidism unlikely†

High fT4

Hyperthyroidism likely
Profile Selection
Suggested CLIPs/profiles that will aid in the identification of abnormalities in tissues, organs, and metabolic systems in the most economical way are:

<table>
<thead>
<tr>
<th>Circumstances for the choice of the profile</th>
<th>A diagnosis is not evident on clinical examination, but one or more lesions are suspected.</th>
<th>A smaller version of the General/Geriatric profile.</th>
<th>As a general precaution for any anesthetic candidate.</th>
<th>Gastrointestinal diseases are suspected.</th>
<th>Cardiac disease is suspected.</th>
<th>Endocrine disease is suspected.</th>
<th>Hepatic damage is suspected.</th>
<th>The investigation of fat metabolism in hypothyroidism, obesity, or lipemic samples.</th>
<th>Acute pancreatitis is suspected.</th>
<th>Renal disease is suspected.</th>
<th>Young preanesthetic profile</th>
<th>Seizures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 17 CLIP</td>
<td>Chem 15 CLIP</td>
<td>Chem 10 CLIP</td>
<td>Gastrointestinal profile</td>
<td>Cardiac profile</td>
<td>Endocrine profile</td>
<td>Hepatic profile</td>
<td>Lipid profile</td>
<td>Pancreatic profile</td>
<td>Renal profile</td>
<td>Young preanesthetic profile</td>
<td>Seizures</td>
<td></td>
</tr>
<tr>
<td>ALB</td>
<td>✓</td>
</tr>
<tr>
<td>ALKP</td>
<td>✓</td>
</tr>
<tr>
<td>ALT</td>
<td>✓</td>
</tr>
<tr>
<td>AMYL</td>
<td>✓</td>
</tr>
<tr>
<td>AST</td>
<td>✓</td>
</tr>
<tr>
<td>BUN/UREA</td>
<td>✓</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>✓</td>
</tr>
<tr>
<td>CHOL</td>
<td>✓</td>
</tr>
<tr>
<td>CK</td>
<td>✓</td>
</tr>
<tr>
<td>CREA</td>
<td>✓</td>
</tr>
<tr>
<td>GGT</td>
<td>✓</td>
</tr>
<tr>
<td>GLU</td>
<td>✓</td>
</tr>
<tr>
<td>LDH</td>
<td>✓</td>
</tr>
<tr>
<td>LIPA</td>
<td>✓</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>✓</td>
</tr>
<tr>
<td>NH₃</td>
<td>✓</td>
</tr>
<tr>
<td>PHBR</td>
<td>✓</td>
</tr>
<tr>
<td>PHOS</td>
<td>✓</td>
</tr>
<tr>
<td>TBIL</td>
<td>✓</td>
</tr>
<tr>
<td>TP</td>
<td>✓</td>
</tr>
<tr>
<td>TRIG</td>
<td>✓</td>
</tr>
<tr>
<td>TT4</td>
<td>✓</td>
</tr>
<tr>
<td>Na⁺ K⁺ Cl⁻</td>
<td>✓</td>
</tr>
<tr>
<td>UPC</td>
<td>✓</td>
</tr>
</tbody>
</table>

*CK: Samples should be taken within 6 hours of a suspected lesion.
*AMYL/LIPA: Samples should be taken within 1 day of the onset of pancreatitis symptoms.
Differences in Results

With a Commercial Laboratory or Other Instrument
Reference ranges must be created for each analyte and each new instrument or method of analysis. Every commercial laboratory must establish its own species reference ranges for the equipment and methodology used. IDEXX is continually doing this work for you with every software release.

Comparing results from different laboratories that may be using different equipment or methods is imprecise at best. Any comparisons should be performed on the same sample that has been “split,” stored under like conditions, and tested at approximately the same time. Compare each result to the reference range stated by IDEXX or the commercial laboratory (as appropriate). Each result should have the same relationship to its method’s reference range. For instance, a sample giving a Catalyst One* result that is slightly below the Catalyst One analyzer’s normal range should give a laboratory result slightly below the laboratory’s normal range.

Technical Specifications

Dimensions
Width: 10.0 inches
Depth: 14.8 inches
Height: 14.0 inches
Weight: approximately 25 pounds

Power Supply
Input: 100–240 V AC, 50–60 Hz, 2 Amps
Power Supply Protection: IPX0
Rated: 24VDC, 6.25A

Input/Output Connections
There are two user-accessible Input/Output connections on the rear of the Catalyst One analyzer (power connection and Ethernet port for connection to IDEXX VetLab* Station).

Operating Conditions
Indoor use only
Altitude: 2000 meters

<table>
<thead>
<tr>
<th></th>
<th>Operating</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>15°C–30°C (59°F–86°F)</td>
<td>5°C–38°C (41°F–100°F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>15%–75%</td>
<td>20%–85%</td>
</tr>
</tbody>
</table>
IDEXX Technical Support Contact Information

IDEXX Sales Representative: ____________________________

Telephone/Voice Mail: ____________________________

United States
IDEXX Laboratories, Inc.
One IDEXX Drive
Westbrook, Maine 04092 USA
Toll-Free Technical Support ….. 1-800-248-2483
Main Telephone Number………. 1-207-556-0300
Toll-Free Fax …………………… 1-800-248-3010
idexx.com

France
IDEXX Laboratories France
84 Rue Charles Michels
93200 Saint Denis
France
Toll-Free Technical Support ….. 00800 1234 3399
Telephone ……………………… 0810 433 999
Fax……………………………. 00 800 1234 3333
idexx.fr

Germany
IDEXX GmbH
Mönkestraße 28/3
D-71636 Ludwigsburg
Germany
Toll-Free Technical Support ….. 00800 1234 3399
Fax……………………………. 0800 6645627
idexx.de

Italy
IDEXX Laboratories Italia, S.r.l.
Via Guglielmo Silva, 36
20149 Milano
Italy
Toll-Free Technical Support ….. 800-917940
Telephone ……………………… (39) 02 319 20 31
Fax……………………………. (39) 02 319 20 347
idexx.it

Spain
IDEXX Laboratorios, S.L.
c/ Plom, nº 2–8, 3º
08038 Barcelona
Spain
Toll-Free Technical Support ….. 00800 1234 3399
Telephone ……………………… (34) 932 672 660
Fax……………………………. 00800 1234 3333
idexx.es

United Kingdom
IDEXX Laboratories Ltd.
Riverside House, Riverside Walk
Windsor, Berkshire
SL4 1NA
United Kingdom
Toll-Free Technical Support ….. 00800 1234 3399
Telephone ……………………… (44) 01753 838900
Fax……………………………. (44) 01753 838901
idexx.co.uk

Australia
IDEXX Laboratories Pty. Ltd.
Metro Centre
Unit 20, 30-46 South Street
Rydalmere, New South Wales 2116
Australia
Toll-Free Technical Support ….. 1300 44 33 99
Telephone ……………………… (61) 2 9898 7300
Fax……………………………. (61) 2 9898 7302
idexx.com.au

Canada
IDEXX Laboratories Canada Corporation
C/O UPS
4071 North Service Rd
Burlington, ON L7L 4X6
Canada
Toll-Free Technical Support ….. 1-800-248-2483
Telephone ……………………… 1-905-602-9499
Toll-Free Fax …………………… 1-800-248-3010
Fax……………………………. 1-905-602-6640
idexx.ca

Japan
IDEXX Laboratories KK
1-22-19, Izumi, Suginami-ku, Tokyo
168-0063 Japan
Toll-Free Technical Support ….. 0120-71-4921
Telephone ……………………… (81) 422 71 4921
Fax……………………………. (81) 422 71 4922
idexx.co.jp

Belgium/Netherlands
IDEXX Laboratories B.V.
Scorpius 60F
2132LR Hoofddorp, Netherlands
Telephone ……………………… 023 5587001
idexx.nl
Denmark
IDEXX Laboratories Denmark ApS
c/o Harbour House
Sundkrogsgade 21
2100 Copenhagen, Denmark
Telephone 80 34 76 18
idexx.dk

Finland
IDEXX Laboratories Oy
c/o Accounting Services Tilimatic Oy
Mannerheimintie 16 A 3
00100 Helsinki, Finland
Telephone 0800 98458
idexx.fi

Norway
IDEXX Laboratories Norge AS
c/o Corpncrdic Norway AS v/Sunde
Brygetorter 1
0250 Oslo, Norway
Telephone 80031026
idexx.no

Sweden
IDEXX Laboratories Sverige AB
Box 16285
103 25 Stockholm, Sverige
Telephone 020 160 5890
idexx.se

Distributor
IDEXX Europe
Scorpius 60F
2132LR Hoofddorp, Netherlands
Telephone 00800 1234 3399
idexx.eu